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1 Introduction

1.1 What is a Nanoantenna?

At radio frequencies, metals may be regarded as perfect conductors. The resonance lengths of
metallic antennas operating in that frequency regime can be calculated using simplified standing-
wave approaches. At optical frequencies, this is not possible: Metals are not perfect such that the
physical properties of nanoscale antennas have to be understood in terms of their electromagnetic
eigenmodes. The eigenmodes of these nanoantennas (NAs) are surface plasmon polaritons (SPPs).
These quasi-particles arise from the interaction of coherent oscillations of the charge density inside
the metal, so-called plasmons, with the electromagnetic field

The study of SPPs, nowadays termed plasmonics, goes back to independent works of Thomson
and Sommerfeld at the end of the 19th century. They considered the propagation of SPPs along
metallic wires [1,2]. Of course, neither of them actually mentioned SPPs. But that the concept of
SPPs was introduced over 100 years ago got evident in Sommerfeld’s “Über die Ausbreitung der
Wellen in der drahtlosen Telegraphie” [3]. In this paper, Sommerfeld discusses two contributions to
the propagation of radio waves. He asked1 “What kind of waves are those in wireless telegraphy?
Are they comparable to Hertzian waves in air or to electrodynamic waves of a wire?”. Clearly,
“Hertzian waves” refers to freely propagating solutions of Maxwell’s equations, but earlier Som-
merfeld explains “electrodynamic waves of a wire” as surface waves, i.e. SPPs. He further provides
their well-known dispersion relation in the case of a flat surface.

Given more than a century of research on plasmonics, one might ask: What is new, what
makes plasmonics such a vivid field of research? As a matter of fact, Thomson and Sommer-
feld were mainly interested in a theoretical understanding of radio frequency broadcasting and
telecommunication devices. Their era saw the dawn of wireless telecommunication; investigations
of antenna-mediated light-matter-interactions at optical frequencies were still far away.

Whereas waves at radio frequencies exhibit energies up to the µeV regime, visible radiation
requires several eV per photon with wavelengths roughly ranging from 400 nm to 800nm. This
spectral range is interesting for two main reasons: First of all, chemical bonds realized by outer
electrons usually have energies in the eV region. Hence a lot of interesting light-matter-interactions
happen at this energy scale. Second, the energy of visible light is higher than that of thermal
radiation and lower than typical binding energies of inner electrons. Thus, detectors for visible
light generally enable better signal-to-noise ratio than in the infrared band and suffer from much
less attenuation in matter than ultraviolet radiation.

In 1959 Feynman gave a remarkable talk entitled “There’s plenty of room at the bottom” in
which he outlined new possibilities if we could “arrange the atoms the way we want” [4]. Arguably,
this talk was the beginning of nanotechnology, which enabled to fabricate sophisticated devices
on the micro- and nanoscale using different techniques. Advanced procedures are e.g. electron or
Helium ion beam lithography, nanoimprinting, atomic layer deposition, surface functionalization,
self-assembly, or epitaxial growth [5]. It was not before the early 1990s that these techniques
became available on a large scale, and there is still much more to come. Because of their size,
plasmonic devices may accomplish what Sommerfeld’s generation could have only dreamt of: to
mediate an interaction of light with matter in the visible spectrum, which is one of the driving
ideas behind the investigation of NAs.

In principle, the interaction strength between plasmonic and quantum systems (QSs) such as

1Original excerpt: “Ferner sind die elektrodynamischen Drahtwellen typische Oberflächenwellen. [...] Welchem
Typus sind nun die Wellen der drahtlosen Telegraphie zuzuzählen? Sind sie den Hertzschen Wellen in Luft zu
vergleichen oder den elektrodynamischen Drahtwellen?”
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atoms, molecules, or quantum dots (QDs) can be orders of magnitude stronger when compared
to the free-space interaction. The reason is that plasmonic excitations are surface modes with
evanescent electromagnetic fields at metal-dielectric interfaces. The strong interaction has two
direct consequences, namely a strong action of a plasmonic excitation on the QS, but also a strong
action of an excitation of the QS on the plasmonic system. Hence, the interaction can be used to
enhance the energy absorption of the QS, to enhance an energy transfer from QS to the plasmonic
system, and a combination of both, that is, a continuous energy exchange among the subsystems.

In addition to the enhanced light-matter-interaction it is desirable that the particular plasmonic
mode used for the interaction can efficiently couple to free-space radiation. Only then the enhanced
interaction can be used for detection or application in the farfield and the plasmonic structure acts
as an antenna on the nanoscale. This requirement leads us to the definition of plasmonic NAs,
inspired by the definition of optical antennas given in Ref. [6]:

A plasmonic nanoantenna is a device designed to efficiently convert freely propa-
gating radiation to localized energy using plasmonic excitations, and vice versa.

The latter definition deals with the kind of devices that are the main subject of this work and we
shall elaborate a little further on what it describes, and what not:

1. NAs without plasmonic materials, often termed dielectric NAs [7–11], have been explicitly
excluded. Therefore, throughout this work, we shall call plasmonic nanoantennas simply
NAs for conciseness. This seems also justified as most of the developed concepts can also be
extrapolated to dielectric NAs.

2. We are not restricted to NAs made of noble metals. Depending on the frequency, various ma-
terials possess metallic properties and thus support plasmonic modes, for example graphene
NAs at THz frequencies [12]. Hence, our definition constitutes no restriction to a certain
frequency band.

3. There is also no restriction to the study of a coupling of NAs to QSs. For instance the
coupling of plasmonic waveguides to NAs is included [13,14].

4. NAs exhibit a great variety of sizes, but we require a certain energy localization. Questions
about NA scaling will be further detailed in Sec. 2.3.

Hence, NAs are still a pretty generic class of plasmonic structures that are able to harvest light
on the nanoscale. But what is the state of the art, what are the usual approaches to fabricate
such devices, and how did we get there? In the following, we will try to answer these questions,
specifically for the case of NAs working at optical frequencies.

The history of NAs as we understand them today started already in 1928. In a letter to Ein-
stein, Synge proposed to use small metallic particles to convert free-space radiation to localized
fields close to a sample surface to break Abbe’s diffraction limit [15]. But Einstein rejected the idea
of the then-unknown scientist. The interest in light-matter-interactions close to metallic nanopar-
ticles increased remarkably with the discovery of the so-called surface-enhanced Raman scattering
(SERS) in 1974 [16]. These experiments allowed to investigate the chemical properties of molecules
on an entirely new level. They also inspired a large number of theoretical and experimental works
to understand the interaction of metallic surfaces to QSs [17–21].

Also, the properties of SPPs were intensively investigated during the 1980’s by Raether [22,23]
and others [24,25]. This period saw the emergence of nanoplasmonics, i.e. plasmonics for nanoscale
structures such as NAs [26]. Synge’s idea was suggested by researchers in several forms and
culminated in the development of scanning near field optical microscopes (SNOM) by Pohl in
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1982 [27]. The concept of NAs started to emerge explicitly. In 1985, Wessel mentioned the use
of small particles as antennas for an incoming optical field [28]. In 1997, Grober suggested to use
optical antennas as optical near-field probes [29]. But possibly due to limitations in the available
fabrication techniques, Grober et al. were only able to perform an experiment using a bow-tie
antenna working at 2.2GHz, i.e. in the microwave frequency region.

Nevertheless, fabrication techniques advanced and the realization of NAs came into reach soon
after [30,31]. In 2000 and 2002, Sqalli et al. used spherical and elliptical gold NAs with dimensions
≈ 50nm as a probe for SNOM imaging [32, 33]. These studies were arguably the first experimen-
tal demonstrations of NAs. Soon after, bow-tie NAs with elements in the same dimension were
investigated by the groups of Moerner and Kino in 2004 [34, 35]. They followed similar but much
larger single-element infrared antenna designs [36]. In 2005, Mühlschlegel et al. were able to suc-
cessfully fabricate NAs made of two gold elements with a minimum total length of approximately
190nm [37].

The experimental breakthroughs starting with Sqalli’s works immediately caused a huge re-
sponse in the scientific community. New possibilities were offered by the latest NAs, especially for
enhanced light-matter-interactions [38–40]. One of the consequences of an enhanced light-matter-
interaction between NAs and QSs is the change of the QS’s spontaneous emission rate. This is
effect was first described by Purcell in the context of cavity quantum electrodynamics [41,42].

In 2005 and 2006, several groups were able to demonstrate the Purcell effect of QSs close to
different kinds of NAs by varying the distance between NAs and QSs [43–45]. Further insight
into this effect was provided by theoretical investigations. They underlined the importance of a
suitable placement of the QS and a thoughtfull design of the NA, which was necessary because
of the losses in plasmonic materials [46, 47]. The prospects to design emission direction [48–51]
and improvements in photovoltaics [52–54] have also contributed fruitful impetus and possible
directions for NA applications.

More recently, NA fabrication reached an entirely new level. It became possible to produce
NA gaps with sub-nm precision [55] and to implement sophisticated NA designs with embedded
QSs [56]. All these efforts have not only brought NA research closer to large-scale industrial
production techniques [57–59]. They also gave rise to many related questions on nanoscale light-
matter-interactions: Which theoretical approaches are needed to describe material properties on
the nanoscale and what models can be used to describe the interaction of QSs and SPPs in a
simplified manner?

Some specific questions are: How to explain the spectral resonances of very small NAs that
are strongly shifted with respect to calculations assuming a classical local material response [60–
62]? Are density functional theory calculations needed [63–66] or is an approach using a nonlocal
response of the metal better suited [67–70]? Can efficient models account for the electron spill-out
at NA terminations and their interaction close to QSs [71,72]? What is the role of magnetic dipole
[73–75] or electric quadrupole [76–78] “forbidden transitions” in NA light-matter interactions? Will
one observe NA-enabled quantum effects such as a strong coupling to QSs [79, 80] or efficient
generation of entangled photons [81]? Thus, a better understanding of NA physics is of major
importance.

On the other hand mankind acquired an enormous amount of knowledge, new perspectives
and fabrication techniques over the last decades. We have reached a point that the generations of
Sommerfeld and Feynman could only have dreamt of. Yet, the surface of what is possible has just
been scratched. In the next couple of years, NA research will allow to understand light-matter-
interactions on an entirely new level. Hopefully, this knowledge can be transfered into astonishing
real-world applications.

3



1.2 Aim and Structure of this Thesis

I became interested in the field of NA research during my attendence of the physics school “Nanoan-
tennas and Hybrid Quantum Systems” held by the German Physical Society in 2011. The pre-
sented concepts and outlined prospects strongly influenced my scientific work. In 2011, NA-driven
light-matter-interactions were mostly understood within classical electrodynamics approaches. A
number of studies detailed the modified emission characteristics such as the spontaneous emission
rate and directivity of QS in the weak coupling regime [46,82].

Very few publications considered either the quantum nature of the QS or of the NA itself, see
e.g. Refs. [83–86]. However, most of these studies used a simplified electrostatic description of
NAs which is suitable only for sufficiently small NAs. Spherical NAs were often considered for the
sake of exact analytical considerations but such NAs generally exhibit a very poor performance for
the investigated effects [85,86]. In fact, such metallic particles may not be called NAs, as they are
not able to efficiently convert free-space radiation to localized energy and vice versa.

So, although electrostatic quantization schemes for simplified geometries are quite appealing,
their actual applicability in experiments and applications is questionable. Fully electrodynamic cal-
culations are therefore needed to predict observables in realistic experimentally accessible systems.
In turn, such calculations are also necessary to explain interesting quantum effects in plasmonics.

The newly emerging field of quantum plasmonics can open new pathways in fundamental science
and applications [87,88]. The study of light-matter-interactions enabled by NAs constitutes a major
part of quantum plasmonics. The present thesis aims to contribute to this field.

The first goal of the thesis is to introduce a reasonable theoretical description for the interac-
tion of NAs with QSs that form a hybrid system. This interaction can be understood in different
approximations to account for the properties of the NA and the QS. Different degrees of approxi-
mation lead to the possibility to put emphasis on the description of different physical effects. For
simplicity we may group these possibilities by the employed description of the NA, since a QS is
suitably described within the laws of quantum mechanics. Three possibilities exist to describe the
hybrid system: a semiclassical approach, a quantum optics approach, and a multimode quantum
approach.

The semiclassical approach refers to a classical description of the NA. It allows to calculate
emission rates in the weak-coupling regime and can be used to analyze sophisticated NA designs
using state-of-the-art computational tools. But it does not allow a calculation of the quantum state
of an external excitation field or of the emitted light of the combined system. This information is
only accessible in a fully quantum description for both NA and QS. The quantum optics approach
offers such a self-consistent approach by a quantization of the electromagnetic field in terms of
infinitely many harmonic oscillators. This quantization scheme always works, irrespective of domi-
nating modes of the NA, but has the disadvantage that one has to deal with an infinite-dimensional
Hilbert space. Within the quantum optics quantization approach, some processes such as the spon-
taneous emission of an excited QS can be analyzed by tracing out the state of the light field. But
the quantum state of the light field is then unknown. To calculate it, the field should not be traced
and a reduction of the Hilbert space is needed. We achieve this reduction within the mentioned
multimode NA quantization approach. Up to now, the quantization scheme was used in a number
of publications [80, 89–91]. The description of the QS itself will be done within the framework of
nonrelativistic quantum mechanics or in a simplified rate equation approximation [92]. With the
help of a proper description of NA and QS their mutual interaction can then be understood in
terms of well-defined coupling terms.

After reaching the first goal, we are able to use a versatile framework to describe the interaction
of NAs with QS in different approximations. The second goal of the thesis is to use this frame-
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work to investigate interesting hybrid systems made of NAs and QSs. We have put emphasis on
questioning widely believed assumptions that may lead to false predictions and misinterpretations
of experimental results. Our findings contribute to the understanding of light-matter-interactions
on the nanoscale. Already in the strongest approximation, i.e. using a classical field description
and a rate equation model, we are able to predict that so-called dipole-forbidden transitions in the
vicinity of NAs might be drastically enhanced [78]. We demonstrate that an understanding of the
dynamics of the QS sustaining such transitions is crucial to understand experimental observables.

Hence new insights are gained already in the simplest description of plasmonic light-matter-
interactions. But there is much more. Using the multimode quantization approach for NAs, we
have access to the quantum state of the emitted light. Within this description it is possible to
discuss nonclassical light emitted by a hybrid system. By investigating the emission of single
photons [89], we detail that not only the enhancement of the spontaneous emission rate of the QS
is important. Also the nonclassical nature of the emitted light has to be considered. We shall see
that the NA quantization scheme is required to self-consistently describe nonclassical light emission
and the strong coupling of NAs to QSs to form truly quantum hybrid systems [80].

The thesis is structured to accomplish the aforementioned goals. In Sec. 2, the basics of
classical NA theory are reviewed up to the point to describe their semiclassical interaction with
QSs. Afterwards, we introduce a scheme to quantize the eigenmodes of NAs to describe truly
quantum interactions (Sec. 3). In Sec. 4 we discuss how NAs can be used to change transition
rates of dipole-forbidden transitions of QSs [78]. Section 5 is devoted to the use of NA-QS hybrid
systems as sources for ultra-bright single-photon generation [89]. Thereafter, we investigate (Sec.
6) the possibility to reach the strong coupling regime of hybrid systems [80].

Finally, an outlook on future works using the introduced theoretical concepts in the current or
a more generalized form is provided. A lot of the derivations and background information that are
needed to verify and understand the outlined results are rather technical or already well documented
in the literature. They are presented as additional material in a comprehensive Appendix right
after the main part of the thesis.
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Figure 1: The structural elements of a fictive NA hosted on a substrate very similar to a Yagi-
Uda NA. All elements are known from radio frequency electrical engineering and offer different
possibilities in NA design.

2 Basics of Nanoantenna Theory

New and improved fabrication techniques made it possible to investigate the interesting properties
of NAs. In fact, NA theory is not a new topic in research and engineering as most of the concepts
are known within the context of antenna theory for long time.

In the following, we shall review some important aspects of classical antenna theory and put
them into relation to NA theory. Introductions to classical antenna theory are given by Balanis
[93] or Stutzmann & Thiele [94]. Antenna theory has also been applied as simplistic models for
NAs [95, 96]. In addition, a number of well-written and detailed introductions to NA theory have
been provided [6, 10, 97–99]. As we are mostly concerned with light-matter-interactions, the NA
designs studied here are rather simplistic compared to state-of-the-art radio frequency antennas,
but still sophisticated enough to show an interesting behavior.

We are mostly interested in the new theoretical aspects that NA research provides in addition
to classical antenna theory. Therefore some of the used terminology will be introduced this section.
Afterwards, we will outline our description of NAs within classical electrodynamics (Sec. 2.1). In
Sec. 2.2 we introduce one of the most important NA parameters, the efficiency η. Afterwards, we
shall investigate how the resonant scaling of NAs can be calculated (Sec. 2.3). We conclude this
Section with a description of the action of a time-varying electromagnetic field on a QS.

Nanoantenna Terminology

Standard definitions for antennas are well established for radio frequencies. These definitions are
essential because they serve as a common ground between different fields, especially electrical
engineering and physics. Thus we shall relate vocabulary and concepts to the widely accepted
“IEEE Draft Standard Definitions of Terms for Antennas” [100].

As illustrated in Fig. 1, a NA consists of several radiating elements that are themselves ca-
pable of receiving and emitting electromagnetic radiation. Three canonical radiating elements are
depicted: a reflector element, a driven element and two director elements. These elements serve
different purposes. The reflector and director elements are designed such that the energy flux
of the emitted radiation is dominantly directed in a specified direction. They have been used
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for optical Yagi-Uda NAs [49–51, 101, 102] and for other geometries involving metallic discs or
spheres [103–105]. Spherical dielectric directors were investigated as well [106,107].

Between reflector and director element is the so-called driven element, which is characterized
by its connection to the transmitter and/or receiver placed inside of the feed of the NA. The
connection of transmitter/receiver to the driven element may be realized by a feed line to acquire
an efficient coupling of the NA [13, 108]. End capacitors placed at the termination of a radiating
element are used to modify their properties i.e. by increasing their apparent length and thus their
resonance characteristics [109,110]. A similar function is attributed to the load which is generally
placed in-between parts of radiating elements. By changing the electromagnetic properties of the
load i.e. by short intense laser pulses, NA resonances can be actively modified on very short time
scales [111–114]. Generally we can state that a lot of the concepts of electrical engineering outlined
in the “IEEE Draft Standard Definitions of Terms for Antennas” have found their way into NA
research.

2.1 Aspects of Classical Electrodynamics

In frequency space, the response of linear materials to an external electric field E (r, ω) can be
described by the constitutive relation

D (r, ω) = ε0ε (r, ω)E (r, ω) (1)

which relates the dielectric displacement D (r, ω) to E (r, ω). Here, ε0 ≈ 8.854F/m refers to the
vacuum permittivity. We further assume that the relative permittivity ε (r, ω) is isotropic, i.e. just
a scalar function. We also implicitly assume a local response of all materials, although this property
is under current investigation for plasmonic materials [64,69]. Please note the usage of a frequency
space representation in Eq. (1). A time representation is related via a Fourier transformation of
the form f (t) =

´∞
−∞ f (ω) exp [−iωt] dω.

Magnetic interactions can be neglected for solid state bodies in the visible frequency range [115].
We may thus assume that the magnetic permeability is unity for all used materials [µ (r, ω) = 1].
The magnetic induction B (r, ω) and magnetic field H (r, ω) are then related by the magnetic
constitutive relationB (r, ω) = µ0H (r, ω), where µ0 = 4π·10−7 H/m is the permeability of vacuum.
In this case, Eq. (1) governs the whole material response of the NA elements and surroundings.
The field equations (Maxwell’s equations) read

∇×E (r, ω) = iωB (r, ω)

∇ ·B (r, ω) = 0

∇ · ε (r, ω)E (r, ω) = ρext (r, ω) /ε0

∇×B (r, ω) = µ0jext (r, ω)− iωε (r, ω)E (r, ω) /c2
(2)

with the speed of light c = 1/
√
ε0µ0 ≡ 299 792 458m/s. The equations on the left, Faraday’s

law of induction and Gauss’s law for magnetism, can be seen as constraint equations for the
fields alone. Gauss’s law and Ampère’s law on the right relate the fields to their causes, charges
and currents. Here, ρext (r, ω) and jext (r, ω) refer to to all charges and currents that are not
governed by Eq. (1). Then, ε (r, ω) includes conductive currents in the form of Ohm’s law,
jcond (r, ω) = σ (r, ω)E (r, ω). Hence we use a generalized permittivity which can be obtained from
the non-conductive permittivity ε̃ (r, ω) by the formal replacement ε̃ (r, ω)→ ε (r, ω)+iσ (r, ω) /ε0ω

[116].
If NAs are made of distinct materials, the generally space-dependent permittivity reduces to

permittivities in different regions Ωi, e.g. εi (ω) for each material from which the NA is built.
For example, εd (ω) may denote an embedding dielectric and εs (ω) a certain substrate. Since
the permittivity is constant in each of these regions, Maxwell’s equations can be used to derive
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inhomogeneous wave equations for electric field and magnetic induction,

(
∆ +

ω2

c2
εi (ω)

)
B (r, ω) = −µ0∇× jext (r, ω) and

(
∇×∇×−ω

2

c2
εi (ω)

)
E (r, ω) = iωµ0jext (r, ω) for r ∈ Ωi . (3)

Here, ∇ × ∇ × F (r) = ∇∇ · F (r) − ∆F (r) has been used. In the absence of external charges,
the wave equation for the electric field may be written as a vectorial Helmholtz equation. Such an
equation also holds for the electromagnetic potentials φ (r, ω) and A (r, ω) that are introduced as
E (r, ω) = −∇φ (r, ω) + iωA (r, ω) and B (r, ω) = ∇×A (r, ω).

Most important for our argumentations is that, by virtue of Eq. (3), the fields can be found
as solutions of a set of elliptical partial differential equations with given boundary conditions. At
the boundary, the tangential component of H (r, ω) and E (r, ω) as well as the normal component
of B (r, ω) and D (r, ω) must be continuous. This holds very general, except in the presence of
surface charges and currents.

We can define the Green’s function G (r, r′, ω) [cf. Eq. (3)] in Cartesian coordinates as

(
∇×∇×−ω

2

c2
ε (r, ω)

)
Gij (r, r′, ω) = δijδ (r− r′) . (4)

In the latter equation it is evident that G (r, r′, ω) is a tensor, i.e. G (r, r′, ω)y ∈ C3 ∀y ∈ C3. To
be consise, the symbol G is employed exclusively for the Green’s function throughout this thesis.
Following Eq. (3), G (r, r′, ω) can be used to calculate the electromagnetic fields via

E (r, ω) = iµ0ω

ˆ
G (r, r′, ω) jext (r, ω) dV ′ and

B (r, ω) = (iω)
−1∇×E (r, ω) . (5)

Please note that Eq. (4) is more general than Eq. (3) as we allow any kind of spatially varying
ε (r, ω), not only piecewise constant εi (ω). Especially in Sec. 3 we will use that any information
about the electrodynamic properties of a system is contained in the knowledge of the Green’s
function to quantize NA fields.

It must be clearly emphasized that the classical electrodynamic description of NAs sketched
here excludes some effects to make certain observables easily accessible in analytical and numerical
considerations. For instance, nonlinearities may add an intensity dependency [117,118] and heating
of the NA may cause a memory effects [119–122].

2.2 Radiation Efficiency

Now everything is at hand to discuss some physical properties of NAs. More detailed information
can be found in devoted references [6,98,123]. In the following we shall focus on just two quantities
which are characteristic for NAs in general and of utmost importance for any investigation and
application: their efficiency and their scaling (Sec. 2.3).

The radiation efficiency η, often simply termed efficiency, appears in any relation of far-field
and near-field observables. For radio frequency antennas, η can be defined as “The ratio of the
total power radiated by an antenna to the net power accepted by the antenna from the connected
transmitter” [100]. Hence, to find a suitable equivalent to this definition, we have to consider a
certain kind of receiver or emitter, i.e. a QS.

In most scenarios studied thus far, the QS is assumed to exhibit a dipolar radiation charac-
teristic, but we will see in Sec. 4 that this may not be the case in general, and that interactions
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Figure 2: Permittivities of widely used plasmonic materials silver (blue dashed lines) and gold
(magenta dashed lines) after Ref. [124], and aluminium (yellow dashed line) after Ref. [125] from
ν = 300THz (λ = 1 µm) to 680THz (λ = 480nm). Left: ε′ (ν) of silver and gold have a very
similar dependency, whereas aluminium shows a stronger metallic character (ε′ (ν) � 0) with
a more complicated shape which cannot be explained by a simple Drude fit. Right: ε′′ (ν) of
silver shows comparably little absorption in the investigated spectral range, whereas gold obeys an
absorption minimum at ν ≈ 450THz (670 nm). ε′′ (ν) of aluminium is lowered by a factor of 10 to
fit on the same graph.

involving higher order terms can play a significant role, too. In our discussion of the efficiency,
we will restrict ourselves to a dipole emitter. A generalization to emitters with more complicated
characteristics is straight forward. In the case of dipole emitters, the efficiency η of a NA can be
defined by the fraction of the power of a radiating dipole that can escape to infinity P na

rad, and its
overall extracted power P na

tot. With the help of Poynting’s Theorem (App. A.1), these powers are
given by

P na
rad (r0, ω0,n) =

˛
r→∞

〈Sdip (r, t)〉 · erdΩ and

P na
tot (r0, ω0,n) =

˛
r=δ

〈Sdip (r, t)〉 · erdΩ = P na
rad + P na

nr with

P na
nr (r0, ω0,n) =

ˆ
ε0ω0ε

′′ (r, ω0)
〈
E2

dip (r, t)
〉
dV . (6)

Here, δ is a small radius containing only the dipole, dΩ is the differential surface element, and
ε′′ (r, ω) is the imaginary part of the permittivity, ε (r, ω) = ε′ (r, ω) + iε′′ (r, ω), and 〈 〉 denotes
a sufficiently long time-average. The subscript “dip” shall indicate that the dipole emitter is the
only source of the electromagnetic fields. It is described by its position r0, its oscillation frequency
ω0, and is its orientation n. The radiation efficiency is then given as

η (r0, ω0,n) =
P na

rad (r0, ω0,n)

P na
rad (r0, ω0,n) + P na

nr (r0, ω0,n)
. (7)

As we can see in Eq. (7), a decreased radiation efficiency is caused by a nonvanishing dissipation
in the environment of the dipole, since then P na

nr 6= 0. Following Eq. (6), P na
nr is caused by the

imaginary part of the permittivity as well as the distribution of the electric field in the dissipative
environment. Thus we shall discuss the main factors that influence the efficiency of a NA: the
electrodynamic properties of the plasmonic material and the NA geometry in the following.

2.2.1 Dissipation in plasmonic Materials

Plasmonic excitations may only be observed if ε′ (ω) between two adjacent materials changes its
sign [26]. Hence, one material must have ε′ (ω) < 0. However, as we know from Kramers-Kronig-
relations, a resonant behavior inevitably leads to non-negligible values in the imaginary part of
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the permittivity and thus to losses in the material. These losses are strongest if the frequency is
close to an intrinsic resonance frequency of the material. Without losses, the efficiency η as defined
by Eq. (7) would always amount to unity. This explains the interest in almost lossless dielectric
NAs [8, 9, 126,127].

A thorough discussion of the loss mechanisms, i.e. conduction band charges, inter- and in-
traband transitions can be found in Ref. [123] for plasmonics or in any introduction to solid
state physics [128]. Detailed introductions to widely used plasmonic materials can be found in
Refs. [129–131]. Silver, gold and aluminium are metals, which are often used in plasmonic re-
search and application. Their respective permittivities are shown in Fig. 2. Silver has the lowest
absorption, which is the reason why it is often chosen for theoretical studies.

Unfortunately, the properties of silver are much more complicated in reality. The noble metal
usually exhibits a thin oxidation layer leading to an often dramatic increase of plasmonic losses.
Moreover, nanoscale fabrication is often challenging and the diffusion of silver ions off nanostruc-
tures makes them toxic [129,130]. Hence, gold is preferred in experiments as, most notably, fabrica-
tion is usually much easier with this material, in bottom-up as well as top-down approaches [132].
On the other hand, gold is usually very expensive and should only be used below ν = 600THz
(500nm) because of strongly increased absorption due to interband transitions. Thus, other mate-
rials such as copper and tungsten have attracted considerable attention, both because of possible
cost reduction and for applications in the UV spectral range [133,134]. Aluminium is also attrac-
tive as it may also be used for short-wavelength devices, in conjunction to CMOS technology and
in nonlinear processes, but it suffers from strongly increased losses compared to gold [57,135,136].
Hence in practice the choice of a plasmonic material follows the constraints of the experiment or
application. Since we are mainly interested to show that certain effects are principally possible
because of the interaction of SPPs with QSs, we shall use gold and silver in our studies.

Please note that we assume that the permittivity of the employed materials is a function of the
frequency only. Further dependencies and our reasoning to neglect them are outlined in App. A.5.

2.2.2 Nanoantenna Geometry

We have seen that the intrinsic absorption in plasmonic materials is the reason for a decrease in
the NA efficiency. So the spatial distribution of the electric field inside the NA material has a
strong influence on the losses as a strong electric field inside the metal leads to a huge dissipation.
Thus, the geometry of the NA, or its proper design, play a dominant role. In the following we will
discuss two characteristic features of NA design: NA size and symmetry.

Size effects The absorption cross section Cabs of small metallic spheres scales with their volume,
whereas the scattering cross section Csca scales with the volume squared when illuminated by a
plane wave [137]. As a first approximation, a similar behavior may be expected if the illumination
is changed to a close-by dipole and we may take the most important result for small gold spheres
as a first indication for minimum NA sizes. For these particles, absorption starts to dominate for
diameters smaller than 50nm and η drops considerably [137]. However, the coupling to close-by
QSs strongly increases for small NAs (Sec. 3.1). Hence, pioneering experiments were performed
with NAs exhibiting dimensions around 50nm to achieve a considerable interaction strength and
a reasonable efficiency [44,45].

The assumption, that 50nm is a characteristic dimension for efficient NAs can further be
justified by basic results from electrical engineering (EE). In this field, the non-perfect overlap
of an antenna mode and radiation modes is interpreted as an impedance mismatch between two
systems [93]. For a one-dimensional antenna, the radiated power Prad of an antenna is often
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expressed in analogy to Ohm’s law in terms of a radiation resistance Rr via Prad = 1
2 |I0|

2
Rr.

The radiation resistance for small dipole antennas scales as Rr ∝ (kL)
2, where k = 2π/λ is the

wavenumber of free-space radiation and L is the length of the antenna [93]. In the near-field
the integral

¸
S (r, ω) · erdΩ exhibits a dominating imaginary contribution Prea ∝ 2ωRr/ (kr)

3,
the reactive power. Prea describes a continuous energy exchange between outgoing and incoming
radiation at twice the oscillation frequency ω.

If we compare the characteristic dependencies of Prad and Prea, we may define a length Lη

for which both powers are approximately even, i.e. a scaling roughly discriminating efficient and
lossy antennas. An efficient radiation can only take place if Lη & λ/2π, which gives approximately
Lη = 80nm for λ = 500nm. This characteristic value is in rough agreement to the aforementioned
comparison of scattering and absorption cross sections of gold spheres.

We can conclude that efficient NAs must have minimum dimensions in the order of Lη. This
size requirement causes a general trade-off between efficiency and achievable coupling strengths of
NAs to QSs. It also defines a lower characteristic size for which we may call a metallic particle a
NA.

Symmetry For radio frequencies, the electric field is approximately normal to the surfaces of
small metallic particles since metals are almost perfect conductors in this frequency range. This
has severe consequences for possible antenna designs, as the Poynting vector S must be always
tangential to the conductor, and

¸
S · dA over the conductor surface vanishes approximately.

Hence, radio frequency antennas made of just a single small element hardly radiate - they
need a gap to operate efficiently. On the other hand, single-element NAs may radiate efficiently
because of their plasmonic properties. The use of single-element NAs is not generally obstructive
if a plasmonic current can be formed over a somehow extended region as it is the case for ring-type
NAs without classical analogue [57,59]. But if one is interested in strong light-matter-interactions,
small NAs that have at least two elements as a feed gap with large field enhancement capabilities
is existing in which a QS can be placed, seem to be most desirable.

Let us assume rotational and mirror symmetry for a certain class of NAs and analyze their
implications for the efficiency within a quasistatic approximation. That is, the NA elements shall
consist of spheroids, wires, discs etc. with coinciding rotational z-axis of symmetry. Furthermore,
for each element located at z−i < 0 there exists a mirror symmetric element at z+

i = −z−i such
that at least one gap around r = 0 is formed. To calculate η, we assume a dipole inside this gap at
r = 0, oriented along the z-axis, i.e. centered between the NA elements. The quasistatic potential
φna

qs (r, ω) of the NA’s scattered field can then be expressed as [138,139]

φna
qs (r, ω) =

1

4πε0

∞∑

n=0

Mn (ω)Pn (cos θ)

rn+1
. (8)

Here, Pn (cos θ) andMn (ω) are the usual Legendre polynomials and quasistatic multipole moments,
respectively. We find that the expansion of the potential on the positive (negative) axis of symmetry
for θ = 0 (or θ = π) is simply given as

φna
qs (z, ω) =

1

4πε0

∞∑

n=0

Mn (ω)

|z|n+1





1 for z > 0 and

(−1)
n

for z < 0 ,

since Pn (1) = 1 and Pn (−1) = (−1)
n. The full information of the system is thus given by an

expansion of the potential on the axis of symmetry. Note that our dipole source is a perfectly
antisymmetric charge distribution. The scattered field of the NA must then also be antisymmetric
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Figure 3: The effect of asymmetry on the efficiency of NAs. (a) Considered geometry: two gold
spheres with radii R1 and R2. Their surface-to-surface separation amounts to the distance 2d. A
dipole emits along the rotational axis of the dimer and is centered on the rotational axis inside
of the gap. Hence, its distance to either sphere is d. The volume of the system is held constant
at V ∝ R3

0. (b)-(f): Radiation efficiency η (λ,R1) for fixed R0 and d. y-axis: R1 as a measure
of asymmetry: the dimer is mirror symmetric if R1 = R0 but becomes more asymmetric for
increased R1. x-axis: emission wavelength λ of the centered dipole. (b)-(d): For R0/d = 2.5,η
remains almost constant for varying R1, although the dipole emission rate compared to free space,
F (λ,R1), reveals interesting resonance phenomena [inset in (c), scaled from 0 to Fmax ≈ 35], (d)-
(f): R0/d increases from 2.5 to 10. The drop in η for higher asymmetry becomes more and more
significant.

and thus obeys φna
qs (z, ω) = −φna

qs (−z, ω), which results in Mn = 0 ∀n = {0, 2, 4 . . . }.
From these symmetry considerations it follows that the octupole mode (n = 3) is the first

nonvanishing “dark mode” of the rotational and mirror symmetric NA that can be excited by the
dipole emitter. This should lead to an increase of η compared to a) asymmetric NAs and b)
asymmetric placements and orientations of the emitter. A design with the assumed symmetries is
especially beneficial if the dipole resonance frequency of the NA and the oscillation frequency of
the emitter coincide. Then, the octupolar mode of the NA is energetically well separated from the
emitter’s oscillation frequency and the coupling to dark modes may be negligible.

We have checked the influence of the asymmetry of NAs on their efficiency with an in-house code
able to calculate the electromagnetic scattering of an almost arbitrary arrangement of spheres [132].
To verify our analytical considerations via such numerical calculations, it is important to distinguish
several effects, as η depends on many geometrical and material parameters. At the focus of our
investigations shall be the influence of the NA symmetry, which results in some requirements
on the NA geometry. We would like to test symmetry dependencies for the simplest systems.
Consequently, we chose spherical metallic dimers with radii R1 and R2, see Fig. 3 (a).

In a simplified picture, a dimer may be described by two radiating dipoles in addition to the
dipole emitter in-between. Thus, to preserve the overall polarizability and its radiation capabilities,
the total volume V ≡ 2×4/3πR3

0 = 4/3π
(
R3

1 +R3
2

)
of the dimer has to remain constant. Hence, if

one radius is decreased, the other one is increased in our investigation, and the maximum (minum)
value of R1/2 is given by 3

√
2R0 (0).

Furthermore, the coupling of the dipole emitter to the spheres should be kept approximately at
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the same level. To achieve this, the distance d between dimer surface and dipole position is kept
constant. That this volume-preserving approach is justified can be seen in Fig. 3 (b)-(d), where
the efficiency η remains almost constant for strong changes in R1 in the case of relatively large
separations of the dimer (R0/d = 2.5). However, if R0/d is increased such that the mutual coupling
of the dimer elements becomes stronger, the metallic spheres form a truly combined system. In that
case, we find that the efficiency significantly drops with increased asymmetry, see Fig. 3 (e) and
(f). Especially in Fig. 3 (f), the drop in η from close to 100 % at λ = 800nm and R1 = R2 = 50nm
to values around 60 % for R1 → 63nm and R2 → 0 nm is remarkable.

Thus the efficiency can be strongly influenced by the symmetry of the NA. The effect is most
pronounced if the NA’s feed gap is small such that the adjacent NA elements form a truly coupled
plasmonic system. Then, symmetric NAs are considerably more efficient than asymmetric ones,
since they suppress the coupling to higher-order modes of the NA. The influence on η is not so
distinctive if the gap is large enough such that the NA elements act as independent radiators. In
this case, the overall volume and material parameters of the used metal are the most important
factors.

We have now discussed the main factor that influences the NA efficiency: the electrodynamic
properties of the material and its geometry. The size is one of the most important quantities,
which leads to the question how the scaling of NAs can be described in general.

2.3 Scaling

NAs exhibit sizes down to a few tens of nanometers, i.e. they are often much smaller than the
wavelength λ. At first this seems contradictory as antennas in the radio frequency regime are
resonant if their length is a multiple of λ/2. The difference in the size-to-wavelength ratio results
from the different kinds of excitations of these antennas. For radio frequencies, surface currents
form standing waves along the antenna. At optical frequencies and, depending on the material,
down to the THz regime, the excitations must be understood in terms of SPP excitations. Those
excitations may exist for very different NA sizes.

Metallic spheres much smaller than the wavelength with permittivity εm (ω) embedded in a
dielectric with permittivity εd (ω) obey a dipolar resonance if the so-called Fröhlich condition
< [εm (ω) + 2εd (ω)] = 0 is fulfilled [137]. For noble metals, the Fröhlich condition is usually
fulfilled at a certain frequency in the visible spectrum, but within the quasistatic approximation
the resonance frequency is independent of the size of the sphere. So very small metallic spheres can
be resonant at optical frequencies, too. Can those spheres be considered as NAs? The minimum
size limit is given by the requirement of an efficient conversion between free-space radiation and
localized energy (cf. page 2). This requirement losely sets lower and upper size limits. Absorption
gives a lower limit for the dimension of a NA. In Sec. 2.2 we have seen that an efficient coupling
to free-space radiation modes can be achieved for NAs with dimensions larger than Lη = λ/2π.
Hence, values of roughly 50 . . . 100 nm are characteristic lengths of NAs working in the visible
spectrum.

On the other hand, NAs may be comparably large. Their maximum size can be defined via
losses: an efficient energy localization is not possible if a NA is so large that an efficient energy
transfer towards its feed gap is prevented. The maximum NA lengths are typically in the order of
tens of µm for visible light, but can increase up to the mm-range for infrared radiation [26]. The use
of large NAs regarding enhanced light-matter-interaction to single molecules may be very limited.
However, such NAs offer different features like a high directivity [49, 50], a possible application
as ultra-thin polarization filters [147]. They may also provide localized energy at different NA
feed gaps for varying wavelengths [148]. In Fig. 4, experimentally investigated NAs with different
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Figure 4: Experimentally investigated NAs arranged according to their characteristic sizes lc (scale-
bars) from 50 nm (a) to 1 μm (d). The images were recorded with different techniques and pub-
lished in different works. (a) lc = 50nm: gold [140,141] and silver [142] NAs with small feed-gaps.
Whereas these NAs are produced using chemical techniques, most of the following ones were fab-
ricated by physical processes, e.g. electron-beam lithography. (b) lc = 100nm: gold-palladium
two-element NA [143] and a silver NA with a ring-type directional element [144]�. The complex-
ity of the NAs is increased in comparison to (a). This trend continues for the NAs in (c) with
lc = 500 nm: an array made of Yagi-Uda NAs [51], self-assembled heptamers [145], a two-element
dipole by Mühlschlegel et al. [37] and a single Yagi-Uda NA [49]�. (d) Relatively large NAs with
lc = 1μm: a two-dipole NA with an intermediate transmission line [146] and a mid-infrared NA
with a tapered feed line [108]. NAs in (c) & (d) are all made of gold.
�These images were slightly modified to enhance the visibility of the NAs.

characteristic length scales are shown.
The proper design of NAs requires insights into their scaling principles. Different approaches

exist to find them, which may be grouped into three general categories depending on the employed
methods:

1. Analytical approaches: scaling and resonance properties can be determined entirely and
explicitly within a mathematical theory.

2. Semianalytical methods: an approximate analytical model can be found that governs the
main physics and provide useful insights and reduce the mathematical complexity.

3. Numerics: physical properties may not be described by analytical models, thus numerical
calculations are necessary.

These different approaches shall be briefly discussed in the following. The insights we will gain
will naturally not be limited to the scaling of NAs. They will also serve us as a guideline on the
use of different levels of approximations for other related questions, i.e. a suitable description of
an interaction of QSs with NAs.
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2.3.1 Analytical Approaches

The use of analytical solutions in terms of basic mathematical functions is generally preferable.
They provide a complete understanding of the physical effects but can only be found in a few
special cases. In particular, such solutions can be obtained only in coordinate systems in which
the Helmholtz equation is separable [149,150]. If the NA surface is entirely perpendicular to one of
the coordinates in these coordinate systems, e.g. the surface of a sphere in spherical coordinates,
Maxwell’s equations reduce to a finite set of algebraic equations in terms of the eigenfunctions of
the Helmholtz equation. But only some of these coordinate systems are useful to describe NAs, as
their volume is naturally finite. Hence, an analytical descriptions for NAs may only be achieved
for certain kinds of ellipsoids. However, already the treatment of spheroids, i.e. ellipsoids with
two axes of equal length, becomes rather involved [137] and analytical solutions usually require
even simpler geometries. For this reason, most scenarios cope with single spherical NAs in the
framework of Mie theory, see e.g. Refs. [6, 98,123].

If the NA is much smaller than the wavelength, an approximative quasistatic description
can be used. In this case, the electric field close to the NA can be determined by solving the
Laplace equation for the electrostatic potential [123]. The Laplace equation is a special case of
the Helmholtz equation for k → 0 (λ → ∞). It is separable in toroidal and bispherical coordi-
nate systems [149,150]. Hence, further analytical solutions can be anticipated. However, thus far,
toroidal NAs have not been analytically investigated to the best of our knowledge, although exper-
imental and numerical studies were performed [151,152]. Furthermore, a description in bispherical
coordinates seems rather inappropriate as Mie theory can be readily generalized to an ensemble
of spheres [132, 153]. Hence we may state that quasistatic analytical solutions can be useful in
coordinate systems in which the Helmholtz equation already yields analytical solutions. This is
the case for spherical NAs. Here, Mie theory can be simplified from a vectorial problem involving
spherical Bessel functions jn (kr) to a scalar description in terms of polynomials in 1/r [154].

But even if the accessible geometries are not very sophisticated, analytical considerations lead
to results that can be used for generalizations. Furthermore, subsequent derivations may also
reveal useful insights into characteristic measures of a physical process.

2.3.2 NAs as Fabry-Perot Resonators: a semianalytical Description

As we have seen, the number of configurations that can be investigated on purely analytical means
is rather limited. Nevertheless, one does not need to apply numerical investigations directly, as
approximative analytical solutions may be obtained. In particular, a Fabry-Perot resonator model
has been rather successful and shall be discussed in the following, although also other semianalytical
models are known [98].

Wire NAs The Fabry-Perot model to describe the scaling of NAs was introduced by Novotny
[155]. He considered wire NAs as resonators that support propagating modes which are reflected
at the terminations of the NA. This reflection is described by a complex reflection coefficient
r = |r| exp [iφr]. Because of the coupling to free-space modes, the reflection at the NA terminations
causes both an amplitude and phase change. This is different compared to a “perfect reflection”
with |r| = 1 and φr = {π or 0} for perfect metallic or magnetic conductors. The supported
propagating modes of a thin wire are m = 0 cylindrical Bessel modes [154]. These modes exhibit
a simple phase dependency φp ∝ k′z in propagation direction z, where k′ is the real part of the
propagation constant and z the wire’s rotational axis. Then, resonant lengths Ln of the nth order
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Figure 5: Circular NAs. (a) Schematic: Rotationally symmetric and piecewise homogeneous per-
mittivity ε (z), radial termination at ρ = R. (b) Bessel-type SPP of a specific circular NA, a
metallic disc. The reflection at the termination leads to an apparent length change.

can be approximately calculated using the Fabry-Perot resonance condition

k′Ln + φr = nπ , (9)

where it is assumed that the NA terminations have the same geometry on both sides [155]. In-
terestingly, φr introduces an appearent length change as large as φr/k

′ if Eq. (9) is compared
to a perfect reflection at the termination. It should be noted that the Fabry-Perot resonance
condition can be derived using the transmitted power through a one-dimensional cavity with re-
flections at its terminations. A resonance occurs if the transmitted power is maximal, i.e. if
1 − 2 |r|2 cos (2k′ + 2φr) exp [−2k′′L] + |r|4 exp [−4k′′L] is minimal for a certain length L of the
resonator [116]. Hence, Eq. (9) is strictly valid only for k′′ = 0, i.e. assuming a lossless resonator
and provides a reasonable approximation for small k′′/k′-ratios.

Novotny did not calculate the reflection coefficient, but rather used an ad-hoc value for φr.
Nevertheless, to understand the scaling of NAs in terms of their supported Fabry-Perot resonances
was a very important step. Within this approach, the scaling of NAs is reduced to two calculations:
1. The dispersion relation of a certain propagating mode along the NA and 2. The reflection
coefficient of that mode at the termination of the NA. For particular symmetries, both calculations
can be accomplished analytically. In fact, Gordon showed that a method he earlier used to calculate
the reflection of SPPs at an infinite half-space [156] could be used to calculate the scaling of wire
NAs [157].

The Fabry-Perot model was later verified experimentally for wire NAs [158]. The success of the
Fabry-Perot model pointed to an equivalence between localized SPPs and Fabry-Perot resonances
of NAs. We were able to prove this equivalence by numerical calculations of the reflection coefficient
for different NA terminations [109].

Gordon’s method to derive the complex reflection coefficient can be summarized as a match of
the tangential electric and magnetic fields at the termination of a NA to the adjacent space. The
method can be divided into a four-step procedure that requires certain NA symmetries (App. A.2).
To illustrate the mathematical approach and its limitations, a complete derivation of Gordon’s
result for wires can be found in App. A.2.2. We also outline why an analytical determination of
the reflection coefficient for arbitrary terminations of wire NAs does not yield a true simplification.

Circular NAs With the help of Gordon’s method, the reflection coefficient can be calculated for
NAs with other geometries as well, and their resonant scaling might be described using Novotny’s
Fabry-Perot approach. In particular, we analyzed the scaling of circular NAs made of an arbitrary
stack of materials and radius R embedded in a material with permittivity εd [159] [Fig. 5 (a)]. In
this case, the NAs are assumed to support Bessel-type SPPs [Fig. 5 (b)] for which the z-component
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of the electric field is given by

Emz (ρ, z) = Jm (kSPPρ) · a (z) for ρ ≤ R . (10)

Here, m denotes an angular index for the suppressed exp [imϕ]-dependency in cylindrical coordi-
nates. The circular NAs may support different plasmonic modes, for example a symmetric and an
antisymmetric mode in the case of a thin metallic disc, which is the simplest example for circular
NAs. The wave vector kSPP = k′SPP + ik′′SPP and the so-called “mode profile” a (z) of the plasmonic
mode can be calculated by the matrix method for layered systems [160]. To find the resonance
radii Rn,m of the circular NAs, a resonance condition equivalent to Eq. (9) can be conjectured in
which the roots of a plane wave are replaced by the nth root of the Bessel function, xn (Jm),

2 · k′SPPRn,m + φm = 2 · xn (Jm) . (11)

As for wire NAs, the phase upon reflection φm causes an apparent length change. With a Fourier
decomposition of the free-space fields for ρ ≥ R, the reflection coefficient rm = |rm| exp [iφm] for a
given mode characterized by a (z) and kSPP can be calculated as [159]

rm =
2πεd kSPPσH

1
m(kSPPR)−DH1

m(kSPPR) Im
−2πεd kSPPσH2

m(kSPPR) +DH2
m(kSPPR) Im

(12)

with the abbreviations

DH1/2
m (x) ≡ ∂xH

1/2
m (x) , σ ≡

ˆ ∞
−∞

ε (z) a (z)
2
dz ,

Im ≡
ˆ ∞
−∞

H1
m

(√
εdk2

0 − k2
zR
)

DH1
m

(√
εdk2

0 − k2
zR
) ·
√
εdk2

0 − k2
z ·B− (kz) ·B+ (kz) dkz

and B± (k) ≡
ˆ ∞
−∞

ε (z) a (z) e±ikzdz .

In the latter equations, H1/2
m (x) are the usual Hankel functions of the first and second kind. These

functions correspond to outwards and inwards propagating cylindrical waves. These so-called
Hankel-type SPPs [161] enable to define a reflection problem at the NA termination in order to
derive rm (cf. App. A.2.1). For strong absorption other eigenfunctions of circular NAs may be
dominant such that a description in Bessel or Hankel functions is no longer valid [162,163]. Thus,
the applicability of Eq. (12) has to be verified for different kind of circular NAs. To do so, we
performed finite difference time domain calculations [164,165].

Numerical Verification Discs of different radii R = {100 . . . 1250}nm and thicknesses d =

{6 . . . 160}nm were considered. A plane wave propagating along the z-axis of symmetry with the
fixed frequency ν = 625THz (λ = 480nm) was used to excite dipolar (m = 1) modes of the NAs.
Because of this illumination, kSPP is constant for a given d and the scaling in terms of Eq. (12)
can be verified without the need to account for the dispersion of kSPP. For these discs we assumed
a relative permittivity of εm ≈ −8.8 + 0.03i, which corresponds to silver at ν = 625THz [124]
with the exception that ε′′ has been reduced in order to simplify the identification of resonances.
However, for all other NAs the values were directly taken from the literature.

The resonance radii Rn ≡ Rn,1 were determined by a computation of the electric field strengths
below and above the structure while changing the radius of discs at a constant thickness. Using
the resonance condition Eq. (11) and the phases upon reflection Eq. (12), we find a remarkable
agreement of analytically predicted resonance radii with their numerically determined counterparts
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Figure 6: The scaling of circular NAs: comparison of analytical predictions [Eq. (11) and Eq.
(12)] to numerical results (εd = 1). (a) Analytically calculated resonance radii Rn (full lines) for
silver discs with different thicknesses di vs. numerical results (dots). Large squares: predicted
Rn for a semi-infinite disc. (b) Top left: Bessel-type Ez above a silver disc (d5 = 80nm). Lower
part: Normalized Ez for the first (blue line) and fourth (magenta line) resonant radius. For ρ < R

the agreement with the expected form ∝ J1 (kSPPρ) (green dashed line) is perfect except a minor
deviation at the termination. kSPP was calculated from the dispersion relation of a metallic layer
(App. A.3). The Rn are linearly related to the roots of J1 for all di. (c) Resonances of a silver disc
with R = 900 nm and d = 20 nm. Top: The maximum value of |Ez (ν)|2 from simulations (blue
line). Resonances (dashed green lines) and line widths (magenta solid lines) as predicted. The
phenomenological ν4-scaling does not hold anymore for the fifth resonance due to high damping.
Bottom: Ez for the fourth and fifth order resonances (blue lines) compared to Bessel functions
(green dashed line). (d) Stacked NA. Field plots: numerically determined Ez for R = 810 nm and
d = 20 nm. Symmetric mode on the left (orange frame) as computed 20 nm above the structure,
antisymmetric one (blue frame) directly in the middle. Bottom: predictions (full lines) against
simulation results (dots).



[Fig. 6 (a)]. Furthermore, the shape of the electric field corresponds to Bessel-type SPPs [cf. Eq.
(10)] and the Rn scale linearly with the roots of J1, which is a direct verification of Eq. (11), see
Fig. 6 (b).

The model can also be applied to find the spectral resonances of a definite circular NA. To verify
this, silver discs with experimental material data [124], a radius of R = 900 nm and a thickness
of d = 20 nm were illuminated by plane waves at different frequencies ν. An excellent agreement
of the predicted resonance frequencies for nearly all orders was observed [Fig. 6 (c)]. For higher
order resonances, however, the propagation length dSPP = 1/k′′SPP can be in the order of the disc’s
diameter and the model must not be applied. This is also reflected by the field profiles for the 5th

resonance. Here, a clear deviation from Bessel-type SPPs can be observed [Fig. 6 (c), lower part].
Furthermore, using the quality factor Q defined by

1

Q
=

1

Qprop
+

1

Qr
= (2k′′SPPR)

2
+ |1− r|2 =

∆ν

ν
, (13)

the width of the resonances can be explained [Fig. 6 (c), upper part].

Up to now, we applied the Fabry-Perot model only to circular NAs made of a single metallic
disc. But it can be used for stacked circular NAs, too [Fig. 5 (a)]. Such NAs introduce a large
degree of freedom to tailor light-matter interactions [56, 82, 166]. We shall restrict ourselves to a
rather simple NA with only a few plasmonic modes for simplicity. The NA under consideration
consists of two silver discs (ε ≈ −8.8 + 0.3i) and a separating dielectric spacer (ε = 1), each of
thickness d, see Fig. 6 (d). It supports several Bessel-type SPPs but only two of them can be
excited by the illuminating plane wave (ν = 625 THz). Because of the symmetry of the NA, its
modal field maxima appear in different layers. Hence, their resonance radii Rn can be determined
calculating the electric field in these layers (see App. A.3.3). For both investigated modes we find
an excellent agreement between analytical predictions and theory [Fig. 6 (d), lower part].

We have seen that the complex reflection coefficient can be used to understand the scaling of
NAs in terms of a simple Fabry-Perot model. It can be used to study other geometries as well, for
example two-dimensional layer systems [167]. The reflection coefficient can be used to determine
important physical quantities of NAs like their resonant sizes and corresponding widths. But other
quantities are accessible, too. For instance, the appearent length change can be used to identify
the oscillating current distribution along NAs via Ohm’s law, jn (r, ω) = σ (r, ω)En (r, ω), where
En (r, ω) corresponds to the plasmonic mode under investigation. Here, the current yields the
radiation characteristics of the NAs [93,168].

2.3.3 Numerical Methods

The determination of NA scalings based on analytical or semianalytical methods is limited to
rather simple geometries. The development of modern computers makes it possible to analyze
highly sophisticated electromagnetic systems via time- or frequency domain calculations [164,165,
169–171]. NA geometries studied thus far include bow-ties [172], quadrumers [173], fractals [148],
oligomers [174], and many others.

Previously we have argued that analytical considerations in terms of simplified models are
always the first choice to find the scaling of NAs. This statement is true regarding other consid-
erations as well, as analytical treatments provide all information about the physical system in a
form that can be used for many purposes. For example, the interaction to close-by QSs can be
investigated in terms of the nearfield of spherical NAs [85,175,176]. On the other hand, the semi-
analytical Fabry-Perot model provides the nearfield of a class of NAs and can be used for proper
interaction studies without the need to investigate the system directly on a numerical basis.
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Thus far we have discussed important electrodynamic parameters of NAs. But to understand
their coupling to QSs, we have to apply quantum physics.

2.4 Interaction with Quantum Systems: Semiclassical Description

One of the interesting potentials of NAs is the localization of the electromagnetic field at specific
spots. This feature offers a wide range of possibilities for enhanced interactions with QSs. In this
section, we focus on the semiclassical description of the interaction of QSs to the electromagnetic
field. Hereby, the fields are incorporated as classical background potential. Such an approach is
generally applicable in the sense of Bohr’s correspondence principle [177], which, losely speaking,
states that quantum calculations must agree with classical calculations for large quantum numbers
[178].

However, before the electromagnetic field is dealt with (Sec. 2.4.2), we shall briefly review how
time dependent perturbation theory is used to calculate observables of a QS subject to an external
perturbation in Sec. 2.4.1. The results of this Section are the theoretical foundations of Sec. 4.

2.4.1 Fermi’s Golden Rule

Without any interaction with its environment, a QS would stay in a certain state for all times.
This changes if a time-dependent interaction potential V (t) is present. Then, a QS may change
its state with certain transition probabilities. Let us assume a QS with a discrete spectrum and
eigenstates |n〉. The Hamiltonian is of the form

H (t) = H0 + V (t) ,

where H0 is the Hamiltonian of the isolated QS such that H0 |n〉 = ~ωn |n〉.
For an interaction potential with slowly varying envelope,

V (t) = Venv (t) e−iω0t + V ?env (t) eiω0t , (14)

the transition rates are given by

Γn→m =
2π

~2
|Venv,mn (ωmn − ω0)|2 [δ (ωmn − ω0) + δ (ωmn + ω0)] , (15)

with ωmn = ωm−ωn. The latter equation is Fermi’s Golden Rule (see App. B.1 for a derivation and
further discussions). Note that the δ-distributions should be interpreted as energy conservation
requirements. Most important for our investigations is that the QS undergoes a transition only if
a transition frequency is equal to the oscillation frequency ω0 of the interaction potential and that
the interaction matrix elements enter quadratically. Hence, by enhancing these matrix elements,
transition rates get enhanced likewise.

2.4.2 Coupling to the Electromagnetic Field

Up to now, the interaction potential has been a general term to describe a semiclassical time-
dependent coupling with a QS. Here we want to describe the interaction of a NA’s electromagnetic
field with QSs. Hence we will briefly review how this interaction can be introduced within non-
relativistic quantum mechanics. Within the so-called minimal coupling, the interaction can be
described by the formal prescription [179]

H (p, r) → H (p− eA (r, t) , r) + eφ (r, t) . (16)
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Minimal coupling naturally follows from the invariance of observables with respect to a U (1) phase
transformation of the wave function and an application of Weyl’s gauge principle. The potentials
A (r, t) and φ (r, t) play an explicit role in the interaction as it is the case for the Aharanov-Bohm-
effect [180,181]. In a time-representation, they are related to the electromagnetic fields via

B (r, t) = ∇×A (r, t) and E (r, t) = −∂tA (r, t)−∇φ (r, t) . (17)

It is well known that A (r, t) and φ (r, t) are not independent from each other and that they are
not uniquely determined. We shall use the Coulomb gauge, which (for ρext (r, t) = 0) reads

∇ ·A (r, t) = 0 and φ (r, t) = 0 . (18)

Then, the Hamiltonian of an isolated charged particle prone to an electromagnetic field is given
by

H =
1

2m
[p− eA (r, t)]

2
+ e φ (r, t)︸ ︷︷ ︸

=0

=
1

2m


p2 − ep ·A (r, t)− eA (r, t) · p + e2A2 (r, t)︸ ︷︷ ︸

≈0




≈ H0 −
e

m
A (r, t) · p . (19)

with H0 = p2/2m. In this derivation we have used that p ·A (r, t) = −i~∇ ·A (r, t) = A (r, t) · p
because of the Coulomb gauge and the term in A2 (r, t), has been neglected. This term corresponds
to the ponderomotive force but is usually negligible for sufficiently weak fields.

For a classical light field described by a vector potential A (r, t), the interaction potential of an
isolated charged particle is given by

Vem (r, t) = − e

m
A (r, t) · p . (20)

This interaction describes both electric and magnetic interaction.
In App. B.2 we derive how Vem (r, t) can be decomposed into an electric and a magnetic part

as

Ve (r, t) = −eE (r, t) · r and (21)

Vm (r, t) =
µB
~

B (r, t) · L . (22)

We use this decomposition in Sec. 4.2 to formulate the electromagnetic coupling in terms of local
electric and magnetic multipole contributions.

It has to be admitted that the outlined coupling of the electromagnetic field to the QS does
not include all possible effects. Most notably, a non-radiative energy transfer between QS and NA
in terms of a Förster resonance energy transfer [182] or Dexter electron transfer [183] has been
regarded. They may considerably influence the physical behavior of a QS only a few nanometers
away from a NA.
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Figure 7: Examples of devices for which a cQED quantization has been applied: (a) microcavities,
(b) photonic crystals, (c) microtoroids, and (d) NAs (cf. Sec. 3.4).

3 Nanoantenna Quantization

So far, the interaction of a NA to QSs has been considered on a purely semiclassical basis: the
QSs were treated following the Schrödinger equation and the electromagnetic field of the NA acts
on the QS. Such an approach is not suitable to describe how the mutual interaction of NA and
QS leads to the emergence of a hybrid QS. The physical properties of the hybrid system have
to be properly described. To do so, a quantization of the electromagnetic modes of the NA is
required, which we shall abbreviate “NA quantization” for conciseness. This quantization can
be accomplished at different levels of approximation. One possibility is to assume a number of
interacting electrons inside the NA, quantize their interaction and study the dynamics of this
system for certain excitations in terms of a time-dependent density functional theory (TD-DFT)
[63, 71, 184]. In this approach, the internal electron dynamics as well as the behaviour of the
electromagnetic fields a few Bohr radii away from the surface of the NAs may be studied. However,
this method is computationally extremely involved such that it may only be applicable for very
small systems and rather simple NA geometries.

Another possibility to study the interaction of NAs and QSs in a fully quantized manner is
to apply a canonical quantization of the electromagnetic field modes within the aforementioned
quantum optics approach [185,186]. However, this quantization scheme causes practical difficulties
as the fields of a NA have to be represented by infinitely many modes to describe all radiative and
nonradiative loss channels. Lossy system quantization is still a field of active research [187–189]
and has become en vogue in plasmonics. It is used to understand the Purcell effect in terms of the
classical quantitites mode volume and quality factor. Especially interpretations and generalizations
of the mode volume attracted appreciable attention [190–194].

The approach we follow provides an easy yet powerful way to understand the interaction of QSs
with plasmonic structures. In particular a fully quantum description of the dynamics is concerned.
We describe the NA fields in terms of quasinormal modes to understand the interaction dynamics.
Since the equations are very similar to the approaches used in cavity quantum electrodynamics
(cQED), we shall start with the respective field quantization (Sec. 3.1). Afterwards, we will briefly
review the quantization in dispersive media (Sec. 3.2), i.e. the quantum optics approach. Then we
shall introduce quasinormal modes in Sec. 3.3 . These modes will be used in Sec. 3.4 to quantize
the NA fields. This quantization scheme will be justified in Sec. 3.5.

3.1 Quantized Cavity Field

In the following discussion we briefly review how the electromagnetic field inside a lossless cavity
can be represented by harmonic oscillator modes and how the mode volume can be naturally
introduced in this context. The approach is the familiar cQED quantization, which is extensively
documented in the literature [195–198]. It has been used to describe different optical devices [199],
see Fig. 7 (a)-(c).
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Electromagnetic Fields: Classical Hamilton Function

Let us assume a one-dimensional vacuum cavity extended in z-direction. It supports a monochro-
matic electromagnetic field of the form

E (z, t) = N q (t) sin (kz) ex with N =

√
2ω2

ε0Vn
and k =

ω

c
. (23)

Here, q (t) denotes the real-valued amplitude of the electric field, k is the scalar wave number and
N is just a normalization constant at this point. The volume of the cavity Vn = ∆x∆y · nπ/k
is arranged in such a way that a resonance condition is realized. Vn is often also referred to as
mode volume. For simplicity we shall only discuss a single mode here, but a generalization to the
multimode case is straight forward. Via Ampère’s law we readily find the magnetic induction as

B (z, t) =
1

kc2
N q̇ (t) cos (kz) ey .

The free-space energy density of the electromagnetic field is given by w =
(
ε0E

2 + B2/µ0

)
/2,

which is also the Hamiltonian density. The corresponding Hamiltonian reads

H =
1

2
N 2

ˆ
V

{
ε0q

2 (t) sin2 (kz) +
1

k2c4µ0
q̇2 (t) cos2 (kz)

}
dV

=
1

2

2ω2

ε0Vn

[
ε0q

2 (t) +
1

k2c4µ0
q̇2 (t)

]
∆x∆y · n π

2k

=
1

2

[
ω2q2 (t) + p2 (t)

]
(24)

since
´ nπ/k

0

{
sin2 (kz) , cos2 (kz)

}
dz = nπ/2k. We have also used Hamilton’s equations ṗ =

−∂H/∂q and q̇ = ∂H/∂p to identify that q̇ = p. Equation (24) is the Hamiltonian of a har-
monic oscillator.

Quantization

The electromagnetic field has a bosonic character and the quantization of the cavity field can be
accomplished interpreting q and p as quantum mechanical operators. In this approach, the Poisson
bracket {q, p} = 1 is replaced by the commutator { , } → [ , ] /i~ for conjugate variables which
results in the canonical commutation relation [q, p] = qp − pq = i~ [200]. Note that throughout
this thesis operators are not denoted by a special notation for aesthetic preferences of the author.
We believe that it should be always clear from the context if a classical or quantum variable is
utilized.

To cast Eq. (24) into an algebraic form, we can introduce the annihilation and creation opera-
tors a and a† as

a =
1√
2

(√
ω

~
q +

i√
~ω

p

)
and a† =

1√
2

(√
ω

~
q − i√

~ω
p

)
. (25)

Then, the well-known commutation relation
[
a, a†

]
= 1 holds. Please note that in the Schrödinger

picture, the operators have time-independent representations, whereas the wave-function is time-
dependent. Hence, a and a† are now constant operators in contrast to Eq. (24). Furthermore, the
Hamiltonian reads as

H = ~ω
(
a†a+

1

2

)
. (26)

23



Equation (26) is the well-known Hamiltonian of the electromagnetic field in a single-mode cavity.
The eigenstates of this Hamiltonian are so-called Fock states |n〉, for which all quantities can be
found by algebraic calculations [92]. In particular:

H |n〉 = En |n〉 with En = ~ω
(
n+

1

2

)
, since

|n〉 =
1√
n
a† |n− 1〉 and a†a |n〉 = n |n〉 . (27)

Hence, the time-dependent expectation value 〈N〉 (t) ≡ 〈ψ (t)|N |ψ (t)〉 of the number operator
N = a†a can be interpreted as the number of photons with energy ~ω inside the cavity.

To understand the interaction of the electric and magnetic fields with QSs in terms of the
annihilation and creation operators, we just have to invert Eq. (25) to find expressions of electric
and magnetic field amplitudes, namely

q =

√
~

2ω

(
a† + a

)
and p = i

√
~ω
2

(
a† − a

)
.

Thus the operators for the electric and magnetic field can be written as

E (z) =

√
~ω
ε0Vn

(
a† + a

)
sin (kz) ex and

B (z) =
i

c

√
~ω
ε0Vn

(
a† − a

)
cos (kz) ey . (28)

The latter expressions are those that usually appear if the quantized field is coupled to matter in
some way. At this point we can see that any coupling to the electromagnetic field scales ∝ 1/

√
Vn

which makes it so appealing to study quantum effects in terms of the mode volume.

3.2 Quantization in Dissipative Media

The quantization of the electromagnetic field inside a lossless vacuum cavity was outlined in the last
subsection. Now we will see how this approach can be generalized to dissipative media. To achieve
this, let us summarize how the quantization of a cavity was achieved conceptionally: A certain
mode of the cavity has been identified and the fields are assumed to exhibit a bosonic character.
The canonical commutation relations are then applied to the field operators that appear in a
Hamiltonian formulation.

Naturally, the one-mode cavity quantization approach can be generalized to the electromagnetic
fields with a discrete mode spectrum. Then, the Hamiltonian is merely a summation over the cavity
modes:

H =
∑

n

~ωn
(
a†nan +

1

2

)
. (29)

Now we shall compare the situation with the canonical quantization procedure for the electromag-
netic fields in dissipative media, i.e. the quantum optics approach [185]. In the case of an arbitrary
superposition of modes, bosonic field operators f (r, ω) and f† (r, ω) are introduced, for which r

and ω are now continuous variables. The generalization of the canonical commutation relations
is achieved by the equal-time commutation relation

[
fk (r, ω) , f†k′ (r, ω)

]
= δkk′δ (r− r′) δ (ω − ω′)

with {k, k′} ∈ {x, y, z}. The Hamiltonian is then given by H =
´
~ωf† (r, ω) · f (r, ω) dωdV .

In this approach, dissipation is introduced using a noise polarisation PN (r, ω). This quan-
tity gives rise to noise charge- and current densities ρN (r, ω) = −∇ · PN (r, ω) and jN (r, ω) =
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−iωPN (r, ω), respectively. A linear relation between f (r, ω) and P (r, ω) that preserves the fun-
damental equal-time commutation relations is given by

PN (r, ω) = i

√
~ε0

π
ε′′ (r, ω)f (r′, ω) .

By virtue of the dyadic Greens function [cf. Eq. (4)], the noise polarisation can be used to find
quantized expressions for the electromagnetic fields following Eq. (5):

E (r, ω) = i

√
~
πε0

ω2

c2

ˆ √
ε′′ (r, ω)G (r, r′, ω) f (r′, ω) dV ′ and (30)

B (r, ω) = (iω)
−1∇×E (r, ω) .

The importance of the Green’s function for this quantization scheme is obvious. The electric and
magnetic field operators are further given by

E (r) =

ˆ ∞
0

E (r, ω) dω + H.c. and B (r) =

ˆ ∞
0

B (r, ω) dω + H.c. . (31)

To understand why we need a simplified scheme to quantize the fields of NAs, let us consider the
probably simplest quantum calculation involving the above formalism: The spontaneous emission
of a two-level-system in a dispersive environment. The calculations will be very helpful to verify
the NA quasimode scheme in Sec. 3.5.

The Weisskopf-Wigner Problem of Spontaneous Emission

The spontaneous emission of a two-level QS shall be studied now. If this effect is treated within the
rotating wave and electric dipole approximations, it is usually termed Weisskopf-Wigner problem
[201]. Its Hamiltonian is given by [185]

H = Hqs +Hint +HEM with

Hqs = ~ωqsσ+σ− ,

Hint = −
ˆ ∞

0

σ+d
? ·E (rqs, ω) + H.c. dω and

HEM =

ˆ
~ωf† (r, ω) · f (r, ω) dωdV . (32)

Within the applied rotating wave approximation (RWA), the creation operators couple only to
annihilation operators, which preserves the photon number. All rapidly oscillating terms are ne-
glected (see also App. B.7). Furthermore, the electric field is given by Eq. (30), rqs is the position
of the QS, d its dipole moment. The σ+ (σ−) are creation (annihilation) operators in the usual
Pauli basis, i.e. σ− |1〉 = |0〉 [197].

The Hilbert space is given by the states |nqs, nEM,ω〉, where nqs is the quantum number of
the QS, nqs = {0, 1}, and nEM,ω = {0, 1, 2, . . . }ω is the quantum number of the single frequency
oscillator ~ωf† (r, ω) f (r, ω) of the electromagnetic field. Following Ref. [185], we may analyze
spontaneous decay, if the QS is initially in its excited state, i.e. |ψ (0)〉 = |1, {0}〉. Within the
RWA, the states of the system with exactly one excitation represented by the amplitude envelopes
c1 (t) and c0,ω (r, t) can be used:

|ψ (t)〉 = e−iω̃tc1 (t) |1, {0}ω〉+

ˆ ∞
0

e−iωtc0,ω (r, t) ·
∣∣∣0, {1}r,ω

〉
dωdV .

Here, ω̃ = ω10 − δω is the new transition frequency of the QS for which the shift δω has yet to be
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found. The notation
∣∣∣0, {1}r,ω

〉
= f† (r, ω) |0, {0}〉 has been used to denote an excitation of the

free field at frequency ω. If we insert the latter ansatz into Schrödinger’s equation, we find the
coupled system of equations

ċ1 (t) = −iδωc1 (t)− 1√
πε0~

ˆ ∞
0

ω2

c2
e−i(ω−ω̃)t

ˆ √
ε′′ (r, ω)d10 ·G (rqs, rqs, ω) · c0,ω (t) dV dω

ċ0,ω (r, t) =
1√
πε0~

ω2

c2

ˆ √
ε′′ (r, ω)d01 ·G? (rqs, rqs, ω) c1 (t) dV , (33)

in which d10 = q 〈1| r |0〉 is the transition dipole moment of the QS. Formal integration of the
second equation and inserting the result into the first equation leads to the integro-differential
equation

ċ1 (t) = −iδωc1 (t)−
ˆ t

0

K (t− t′) c1 (t′) dt′ with

K (t− t′) =
1

πε0~

ˆ ∞
0

ω2

c2
e−i(ω−ω̃)(t−t′)d10 · =G (rqs, rqs, ω) · d01dω . (34)

The general relation
∑
k

´ (
ω2/c2

)√
ε′′ (r̃, ω)Gik (r, r̃, ω)G?jk (r′, r̃, ω) d3r̃ = =Gij (r, r′, ω) was used

(see App. A in Ref. [185] for a derivation).

Equation (34) can be exactly evaluated for special integral kernels K (τ). We shall restrict
ourselves here to the weak coupling regime. The fluctuation of the amplitude c1 (t) is assumed
to be much slower than any timescale of K (t) in this regime. Then we may replace c1 (t′) by
c1 (t), i.e. we assume the interaction to be instantaneous. With this assumption, we can further
replace

´ t
0
K (t− t′) dt′ →

´∞
0
K (t− t′) dt′. This approach is known as the Markov approximation.

It leads to an exponential decay of c1 (t) at a rate γwc/2, where the subscript denotes the weak
coupling regime. With

´∞
0
eiωtdt = πδ (ω) + iP/ω one gets

ˆ ∞
0

K (t) eiδωtdt = iδω +
1

2
γwc with

δω =
1

π~ε0
P
ˆ ∞

0

ω2

c2
d10 · =G (rqs, rqs, ω) · d01

ω̃ − ω dω ,

γwc =
2

~ε0

ω̃2

c2
d10 · =G (rqs, rqs, ω̃) · d01 . (35)

This result is very intuitive since =G (rqs, rqs, ω̃) · d01 is proportional to the electric field caused
by a dipole at its very position [cf. Eq. (5)]. Hence, the dipole interacts with itself and we
may regard spontaneous emission as a self-induced stimulated emission process. Noteworthy the
emission rate in the weak coupling regime is just the classical result for the emission rate of a
classical dipole [123].

Note that we may also calculate emission rates in the so-called strong coupling regime (Sec.
6 and App. B.5). In this case, the atomic state population changes on time scales shorter than
characteristic correlation time scales of the kernel K (τ). Then the decay of the QS changes to a
dynamic situation with constant energy exchange of QS and its environment. Consequently, the
results in the weak regime are no longer valid. They are also not valid if memory effects cause
non-markovian dynamics. Such effects can occur e.g. if a QS is coupled to a photonic crystal that
exhibits a band edge close to the resonance frequency of the QS [202,203].

Some further work would be required to show that the change in transition frequency, δω, is
mainly related to the real part of the Green’s function [185]. This might be anticipated since the
principal value integral in Eq. (35) has similarities to the integrations appearing in the Kramers-
Kronig relations. Noteworthy, δω is given as an implicit expression, since ω̃ = ω10 − δω. The
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spectral shift is often ignored as it is orders of magnitude smaller than γwc and ω10 in the weak
coupling regime.

The Purcell Factor We further define

Ftot (r, ω) ≡ d10 · =G (r, r, ω) · d01

d10 · =Gfs (r, r, ω) · d01
, with (36)

Gfs (r, r′, ω)ij =
c2

4πω2

[
∂i∂j +

ω2

c2
δij

]
exp

[
iωc |r− r′|

]

|r− r′| , (37)

which is the Green’s function of free-space as a solution to Eq. (4) for the boundary conditions
Gfs (r, r′, ω) → 0 for |r− r′| → ∞. The “total” Purcell factor Ftot refers to the enhancement
of spontaneous emission rates of the dipole emitter compared to free space in the weak coupling
regime [cf. Eq. (35)]. However, in the literature mainly the “radiative” Purcell factor F = ηFtot

is discussed. It refers to the emission rate enhancement, as it can be measured in the farfield, i.e.
for r →∞. We may simply call F Purcell factor for this reason.

The Spectral Density In the Markov approximation, =G (r, r, ω) is proportional to the spon-
taneous emission rate [Eq. (35)]. Furthermore, the kernel K (τ) is also closely related to the
imaginary part of the Green’s function [Eq. (34)]. This relation can be somewhat simplified via
the introduction of a useful quantity, the so-called spectral density J (ω). It is given by

K (t− t′) =

ˆ ∞
0

J (ω) exp [i (ω̃ − ω) (t− t′)] dω , such that

J (ω) =
1

πε0~
ω2

c2
d10 · =G (rqs, rqs, ω) · d01 . (38)

It must not be forgotten that J (ω) ≡ J (rqs, ω,d10) implicitly depends on the position of the
QS and the strength and orientation of its dipole moment. Furthermore, other J (ω) may appear
when transitions other than electric dipolar ones are involved. As we will discuss in Sec. 4, such
“forbidden transitions” can be hugely enhanced by NAs and naturally lead to magnetic dipole
spectral densities, electric quadrupole ones and so on [204]. Please note that J (ω) is a quantity
very similar to the local density of states (LDOS). The relation between these quantities is derived
in App. B.5.2.

A Practical Problem for Numerical Investigations Solving integro-differential equations
like Eq. (34) to determine the dynamics of hybrid plasmonic quantum system is not just theo-
retically demanding. It is in particular numerically involved if not only the state of the QS is of
interest. This is the case if we want to understand the quantum statistics of the electromagnetic
field. Then, the entire state of the combined system has to be evaluated and the dynamics of the
electromagnetic states cannot be integrated out as we did to get rid of the c0,ω (t). In this case,
one directly deals with an infinite-dimensional Hilbert space as HEM =

´
f† (r, ω) · f (r, ω) dωdV is

continuous in ω.
But naive approximative methods are prone to fail, too: We may restrict an analysis to, say,

only ten intervals of the spectrum around some ωn such that HEM =
∑10
n=1

´
f† (r, ωn)·f (r, ωn) dV .

Furthermore, only a maximum of two photons in each oscillator (n = {0, 1, 2}) shall be assumed.
The Hilbert space then exhibits a dimension of dim (H) =

∏
i dim (Hi) = 2× 310 > 105.

Hence we need to find a way to treat the full quantum dynamics within an approximative
scheme that allows us to access the quantum state of the hybrid system. This will help us to go
beyond simple spontaneous emission calculations and to enter a truly quantum regime with all
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its fascinating effects. In the next subsection we will see that quasinormal modes are indeed this
kind of approximation that allows us to understand the quantum dynamics in a rather simplistic
cQED-like approach.

3.3 Quasinormal Modes

In Sec. 3.1 we have seen that the cQED approach used to describe the quantum dynamics of the
electromagnetic field is quite appealing. It is a rather simple description since the Hamiltonian
consists of a few harmonic oscillators. Furthermore, the study of light-matter-interactions within
the minimal coupling framework [Eq. (16)] is fairly easy to achieve [Eq. (28)].

To apply a multimode cQED-approach to NA quantization, we have to assume that the field of
a NA can in fact be approximated by a few modes only. But these modes cannot be normal modes
in the strict sense of a solution to a Hermitian operator as the involved dielectric materials are
lossy. The problem can be tackled in terms of well-defined so-called quasinormal modes (QNMs)
[205–207]. Following Refs. [191] and [208], we may approach QNMs using the wave equation (3)
for the electric field by introducing a background permittivity εB (ω) as

[
∇×∇×−ω

2

c2
{ε (r, ω)− εB (ω) + εB (ω)}

]
E (r, ω) = iωµ0jext (r, ω) , (39)

[
∇×∇×−ω

2

c2
εB (ω)

]
E (r, ω) = iωµ0jext (r, ω) +

ω2

c2
∆ε (r, ω)E (r, ω)

with ∆ε (r, ω) ≡ ε (r, ω)− εB (ω). The right hand side of Eq. (39) can be interpreted as a source
term. An advantage is that the dyadic Green’s function GB (r, r′, ω) for the differential operator
D = ∇×∇×−ω2

c2 εB (ω) is just the free-space solution given in Eq. (37) with the formal replacement
k = ω/c→ kB =

√
εB (ω)ω/c . Then Eq. (3) reads as

E (r, ω) = EB (r, ω) +
ω2

c2

ˆ
GB (r, r′, ω) ∆ε (r′, ω)E (r′, ω) dV ′ , (40)

where EB (r, ω) = iωµ0

´
GB (r, r′, ω) jext (r′, ω) dV ′ is the background field caused by external

charges.
Equation (40) is a special form of the Lippmann-Schwinger equation that appears in scattering

problems in quantum mechanics [209]. It can be seen as a basis for other scattering problems as
well. Examples are the scattering of multiple spheres [153,210] and the so-called boundary element
method [169,211,212]. Most importantly, Eq. (40) allows to define QNMs in the following way:

Quasinormal modes En (r) are normalized solutions of the excitation-free Lippmann-
Schwinger equation

En (r) =
ω̃2
n

c2

ˆ
GB (r, r′, ω̃n) ∆ε (r′, ω̃n)En (r′) dV ′ . (41)

Here, En (r) is the electric field of the nth quasi-mode. Its eigenfrequency ω̃n = ωn − iΓn is
necessarily complex as Eq. (40) describes an open system for which the associated mathematical
operators are not Hermitian [206]. Naturally, < (ω̃n) = ωn denotes the frequency of the QNM,
−= (ω̃n) = Γn its loss-rate, and Qn = ωn/2Γn its quality factor [123].

Please note that the normalization scheme was left open, as different approaches exist in the
literature based on the actual purpose the QNMs are used for [194]. Furthermore, following
Ref. [207], it is often possible to express the transverse of G (r, r′, ω) as a superposition of QNMs,
but a discussion of the limitations of this approach is beyond the scope of this work.
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Figure 8: Lorentzian character of J (ω) ∝ ω3/ω3
0F (ω). Upper part: Investigated NAs - all scales

in nm. The grey inset illustrates the polarization of the dipole emitters and their position markups
(red dots). Lower part: ω3/ω3

0 F (ω) as a function of ν = ω/2π for the respective geometries in x-
and y-polarization of the dipole (blue and green solid lines) and multi-Lorentzian fits (circles).

To calculate parameters for the quantization scheme based on QNMs, we assume that the time
dependency of the electric field of QNMs is given by

En (r, t) =
1

2

[
En (r) e

−iω̃nt +E�
n (r) e

iω̃nt
]
. (42)

The generalization to slowly varying amplitudes can be achieved by the replacement En (r) →
Eenv,n (r, t).

3.4 Quasinormal Mode Quantization Scheme

We have seen how the electromagnetic field can be quantized in a cavity and in the presence of
dispersive media. The advantage of the cavity quantization is that only a few modes need to
be considered. In the quantum optics approach infinitely many modes are required to account for
dissipation. The introduction of QNMs allows to analyze the excitations of NAs in a self-consistent
manner. In the following we shall use the QNMs to quantize the field of a NA. The main step is
to determine the QNMs in a way that is more practical than to solve Eq. (41).

Motivation and Definition

There are two main motivations for the QNM quantization we introduce.
1. The spectral density J (ω) for QSs close to NAs can often be described by a superposition

of Lorentzians. Such an approach is known to be approximative [192]. However, in Fig. 8 we
show that it holds for exemplarily investigated gold NAs (Fig. 8, upper parts). Their permittivity
was taken from Ref. [124] and we assume an embedding dielectric with permittivity εd = 2.2.
The electromagnetic calculations were made with a freely available simulation toolbox [169]. If
we assume that the efficiency of the NAs is almost constant for the spectral range of a resonance,
then ω3/ω3

0 F (ω) ∝ J (ω) (exact relation in App. B.6, ω0 = 2πc/500nm) and we can analyze
J (ω) in terms of the familiar Purcell factor (Fig. 8, lower parts). The agreement of ω3/ω3

0 F (ω)

to multi-Lorentzian fits is remarkable for ν � 600THz (λ ≈ 500 nm), where gold becomes rather
dissipative and starts to lose its metallic character (Fig. 2).

2. It turns out that the Weisskopf-Wigner problem of spontaneous emission can be solved in full
analyticity if the spectral density J (ω) exhibits a Lorentzian shape (App. B.5). In that case, the
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evolution of the QS in the quantum optics approach should be equivalent to the coupling to a lossy
harmonic oscillator [213], i.e. equivalent to a lossy Jaynes-Cummings model [cf. Eq. (49)]. The
equivalence to a Jaynes-Cummings model is only claimed in Ref. [213] for a spectral density J (ω)

with a single Lorentzian peak. Beyond that we may assume that this approach is also applicable
for multiple independent Lorentzian contributions to J (ω).

Consequently the QNM quantization scheme is defined as follows:

If the spectral density J (ω) of a NA can be approximately described by a superpo-
sition of independent Lorentzians,

J (ω) =
1

π

N∑

n=1

αn
Γn/2

(ω − ωn)
2

+ (Γn/2)
2 , (43)

the interaction of that NA to a QS can be approximately calculated quantizing the NA
as lossy harmonic oscillators. The parameters ωn and Γn of the nth oscillator are given
by the energies and loss rates of the QNM, En = ~<ω̃n = ~ωn and Γn = −=ω̃n. The
electromagnetic fields of each QNM must be normalized in such a way that it amounts
to En. Last but not least, the normalization constants αn fulfill

´∞
−∞ J (ω) dω =

∑
n αn.

Approximate Determination of Quasinormal Modes

Thus, the QNMs may be used to quantize NAs, but from a practical point of view it is not clear
how to determine them. A direct solution of Eq. (41) seems to be rather involved, and the QNMs
determined in this way may diverge for |r| → ∞ [192]. Hence it is favourable to find a robust
and simple approximative scheme to determine the QNMs. Such a scheme is provided by a rather
simplistic scattering analysis and consists of four main steps (see also App. B in Ref. [80]):

1. Determine the real part of a QNM eigenfrequency, ωn, by a maximum in the scattering (or
extinction) cross sections upon illumination with a suitable source, i.e. plane wave or dipole.
Preferably, the illumination source should be chosen such that only the investigated QNM is
excited.

2. Normalize the mode such that its energy is given by [115]

En =
1

4

ˆ
Ω

{
ε0

(
∂ωω< [ε (r, ω)]ω=ωn

)
|En (r)|2 + |Bn (r)|2 /µ0

}
dV

!
= ~ωn . (44)

3. Calculate the loss rates for this mode via Poynting’s theorem as

Γn = Γn,rad + Γn,diss

=
1

2En

[
1

µ0

˛
r→∞

< [En (r)×B?
n (r)] · ndΩ +

ˆ
Ω

ε0ω0ε
′′ (r, ω0) |En (r, t)|2 dV

]
.(45)

4. Determine the coupling constants following Eqs. 21 and 22, i.e. in the electric dipole ap-
proximation.

This four-step-approach to determine the QNMs of a NA is approximative for three reasons:
First, the integral to determine the mode energy En contains radiative contributions that in

general should be substracted [190]. But it is not clear how to do this in a self-consistent manner
in practice. To study the influence of the radiative contributions in the energy normalization of
Eq. (44), we performed calculations with a variation of the integration domain Ω. We have seen
almost no variation in the resulting mode parameters if Ω contains the local near field of the NA.
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Second, the scattered field is inherently excitation dependent [194]. From a mathematical point
of view, this argument is certainly correct. Nevertheless, as QNMs may also be defined as the poles
of the response function of a system [116], a distinctive maximum in the scattering cross section
can be used to approximately identify the real part of the resonance frequency. Then, by analyzing
only the scattered field of the NA, the QNM’s fields En (r) and Bn (r) can be approximately
determined.

Third, there is yet a completeness relation to be shown for such modes [194]. Even though
this argument is also valid, only a few modes may be used to study the interaction of NAs and
QSs. The main requirement is that the QNMs are orthogonal, which is naturally the case if the
identification of the modes is unambiguous.

Finally, the determination of the eigenfrequencies ωn in the farfield by a scattering analysis
incorporates a known frequency shift compared to near-field investigations [214–216]. This ap-
proximation can be avoided by a determination of the ωn in the near-field. A straight forward
approach is to calculate the electromagnetic field at locations where the investigated QNM exhibits
large field enhancements, e.g. in the gap of a NA.

Incorporation of Irreversible Processes

Within the QNM quantization scheme, the Hamiltonian of the NA is given by a superposition of
harmonic oscillators,

Hna =
∑

n

~ωn
(
a†nan +

1

2

)
.

Since the NA loss rates Γn cannot be included into a Hermitian Hamiltonian, a density matrix
formulation has to be used [185]. The density matrix is given by ρ (t) =

∑
n pn (t) |n〉 〈n| in the

orthonormal basis {|n〉}, in which the pn (t) are the probabilities of the nth state. Note that ρ (t)

contains all information about the physical system. For example, expectation values of an arbitrary
operator A can be calculated as 〈A〉 (t) =

∑
n pn (t) 〈n|A |n〉 ≡ tr [Aρ (t)].

A hybrid system involving a NA and a QS can be described by the Hamiltonian H = Hna+H0+

Hint, where H0 denotes the Hamiltonian of the QS and Hint an interaction between all involved
subsystems. The density matrix of this system evolves according to the Lindblad-Kossakowski
equation [195,217,218]

i~∂tρ (t) = [H, ρ (t)] + i~Ldecay [ρ (t)] + i~LQS [ρ (t)] , with

Ldecay [ρ (t)] =
∑

n

Γn
2

{
2anρ (t) a†n − ρ (t) a†nan − a†nanρ (t)

}
. (46)

Here, Ldecay is a so-called Lindblad operator introduced to incorporate the NA radiative and
nonradiative decay, and LQS is a Lindblad operator for the QS. The LQS be needed to introduce
dephasing mechanism that do not affect the population distribution but the coherence of the
QS [219].

Lindblad operators generally allow to introduce irreversible processes to the evolution of QSs
in a self-consistent manner. They arise quite naturally in the study of coupled QSs, for wich the
dynamics of only a certain part is of interest and the remaining part can be “traced out” [220].
Specifically, Ldecay refers to energy relaxation. It causes an exponential decay of the expectation of
the number operator for the nth mode, a†nan, at a rate Γn [185]. This Lindblad operator results in
a Lorentzian spectral density, but other spectral densities might be approximated using different
Lindblad operators [221].

31



A Note on the Determination of Parameters As mentioned already, the interaction of QS
to NAs in a fully quantum description is a main motivation. To understand such interactions,
additional coupling Hamiltonians Hint have to be introduced. Defining such interaction terms,
however, one has to be careful when working in the frequency domain.

For example, within the RWA, the semiclassical interaction between a dipole and the electric
field of a QNM can be formulated. According to Eqs. (21) and (42),

Hint = (dσ+ + d?σ−) ed ·
(

1

2
En (r) e−iωnt +

1

2
E?n (r) eiωnt

)

≈ ed · dσ+
1

2
En (r) e−iωt + H.c. ≡ ~κnσ+e

−iωt + H.c. ,

with σ+ (σ−) as the QS’s creation (annihilation) operators and dipole moment d = ded. The
electric dipole coupling strength is then given by

κn =
1

2

ded ·En (r)

~
. (47)

3.5 Verification of the quantization Scheme

Few-mode quantization procedures have been successfully applied already in different fields of
research, see e.g. Refs. [185, 222, 223]. In this section we give some examples along with some
intuitive arguments that such a description is applicable to NAs. We verify the equivalence of
spontaneous emission of a QS in the quantum optics and QNM quantization pictures under the
assumption of a Lorentzian spectral density. The equivalence of the Purcell factor calculated from
QNM parameters or far-field observables is checked as well.

A good example for the applicability of few-mode quantizations was given by Laussy et al. [224],
who investigated the coupling of the electronic states of QDs to the electromagnetic modes of
semiconductor microcavities. The authors were able to explain all details of the strong coupling
observed by Reithmaier et al. [225]. Hybrid plasmonic systems have been studied within a few-
mode harmonic oscillator quantization as well [79, 86,176,226].

Furthermore, the widely applicable Drude model for the electron dynamics in NAs naturally
leads to oscillatory motions of the electrons. In quasistatic approximations, such NAs cause a
Lorentzian spectral density J (ω) for nearby QSs [213, 227]. Moreover, it was demonstrated ex-
perimentally that certain individual NAs exhibit an oscillator-like response [228–230]. By virtue
of the correspondence principle, such observations imply that the excitations of such NAs can be
described as quantum harmonic oscillators. So, especially for small NAs with localized oscillating
conduction electrons, the few-mode quantization seems very feasible. Thus our observations of
multi-Lorentzian J (ω) in Fig. 8 can be seen as widely applicable. Nevertheless we note that J (ω)

can be arbitrarily complicated. This can already be seen for lossy optical cavities [188, 231]. In
such cases a quantum optics description is probably required.

Lossy Jaynes-Cummings Model vs. Lorentzian spectral Density

The equivalence of a lossy Jaynes-Cummings model and a Lorentzian spectral density shall be
checked now. To do so, we numerically calculate the decay of a QS’s excitation in the Jaynes-
Cummings model for varying parameters. Then we compare this decay to analytical results for a
QS subject to a Lorentzian spectral density with the same parameters.

In our treatment of the Weisskopf-Wigner problem of spontaneous emission in Sec. 3.2 we have
seen that the excited state amplitude of the involved two-level system follows the integro-differential
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equation

ċ1 (t) = −
ˆ t

0

K (t− t′) c1 (t′) dt′ , (48)

if we neglect the spectral shift δω [cf. Eq. (34)]. As it is shown in App. B.5, this equation of
motion can be solved fully analytically for a Lorentzian spectral density. Most importantly, the
decay rate in the weak coupling regime, γwc, is correctly reproduced if

J (ω) =
γwc

2π

(Γ/2)
2

(ωna − ω)
2

+ (Γ/2)
2 .

The spontaneous emission rate γwc of the two-level system coupled to a single harmonic oscillator
can be calculated under certain assumptions (cf. App. B.8). At resonance (ωna = ωQS), it simply
reads as γwc = 4κ2/Γ. Here, κ is the coupling rate between QS and NA, and Γ the loss rate of the
NA, and the Hamiltonian is given by

H = ~ωqsσ+σ− + ~ωna

(
a†a+

1

2

)
+ ~κ

(
σ+a+ a†σ−

)
(49)

This Hamiltonian corresponds to the aforementioned Jaynes-Cummings model [198]. As already
discussed, the losses of the NA are introduced within a density matrix formulation of the problem
[Eq. (46)]. Because of the determination of γwc in terms of QNM parameters, it is possible to
compare the evolution of the QS subject to a full Lorentzian spectral density vs. a single harmonic
oscillator with the same parameters. If the quantization procedure is correct, the evolution should
be equivalent.

With the help of a freely available quantum optics toolbox [232], we did calculations for different
coupling rates ranging from κ = 0.1Γ (weak coupling) to κ = 2Γ (strong coupling). As expected,
a perfect agreement of c1 (t) between the full quantization and single-mode quantization (Fig. 9,
left part) is found. Hence we may assume that the coupling to a single harmonic oscillator is
equivalent to a Lorentzian spectral density. We note that this equivalence might be obtainable in a
fully analytical way tracing out the lossy harmonic oscillator [see again Eq. (46)] to obtain density
matrix equations of motion for the two-level system alone. If then the equations of motion are
equivalent to those of a two-level system subject to a Lorentzian spectral density, the equivalence
of a coupling to a single harmonic oscillator and a Lorentzian spectral density is shown.

Spontaneous Emission Rates

There is another way to test whether the introduced QNM quantization approach is suitable
or not. In the weak coupling limit the radiative emission rate of a QS can be checked against
classical dipole emission calculations. Within the classical radiation scenario, however, it is more
convenient to calculate the Purcell factor F = γrad,wc/γfs, as no normalization is needed: F may
be simply calculated by the ratio of the radiated power with and without NA, F = Prad,na/Pfs [6].
Obviously, in the weak coupling regime F = ηγwc/γfs = 4ηκ2/Γγfs, since γrad,wc = ηγwc. Please
note that the well-known classical free-space emission rate is often defined using the real part of
the refractive index of a possible homogeneous embedding medium, γfs = nembω

3
QS |d|

2
/3πε0~c3.

We have adopted this definition for our calculations.

The coupling rate κ and the NA loss rate Γ = Γrad + Γdiss are calculated within the QNM
quantization scheme following Eqs. (45) and (47). The determination of the Purcell factor relies
on two absolutely different schemes. An agreement would prove the applicability of the NA quan-
tization scheme in the context of spontaneous emission. A comparison of F for both determination
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Figure 9: Verification of the NA quantization scheme. Left: Evolution of the excited state popu-
lation |c1 (t)|2 of a two-level system coupled to a Lorentzian spectral density J (ω) (solid lines) vs.
single mode quantization calculations (black dashed lines). |c1 (t)|2 coincides in both weak (green
line) and strong coupling regimes (red line, inset). The Markovian decay |c1 (t)|2 ∝ exp [−γwct] is
only a good approximation in the weak coupling regime (blue dashed line). Right: Purcell factors
for NAs with different sizes and conformal factors. F = ηγ∞/γfs based on the QNM quantization
scheme (solid dots) vs. F = Pna/Pfs via a direct calculation of the radiated powers [circles, Eq.
(6)].

schemes is given in Fig. 9 (right). The very good agreement between the QNM determination and
direct calculation of F for a wide range of NAs shows the applicability of the QNM quantization
scheme.

By virtue of QNMs we have found a reliable and easy-to-implement quantization of NAs to
study quantum light-matter interactions. For instance, we will investigate single photon emission
by hybrid systems (Sec. 5 based on Ref. [89]) and the possibility to reach the strong coupling limit
(Sec. 6 based on Ref. [80]). Furthermore, two other publications are based on this NA quantization
procedure [90,91].

In Sec. 2, we described NAs in terms of classical electrodynamics. In this section we found an
accessible way to quantize NA-QS-interactions. We used (and sometimes even extended) results
from antenna theory, classical electrodynamics and quantum optics. Combined, these theories
provide a powerful toolbox to describe and study the interactions of QSs with NAs at different
levels of approximation. We will now use this toolbox to study so-called dipole-forbidden transitions
in a semiclassical framework.
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Figure 10: Schematic illustration of the enhancement of forbidden transitions via NAs. Left: The
wavelength of a plane wave (red) compared to the size of a QS, myoglobin in this case. The electric
field is almost constant across the QS. Right: a dimer NA illuminated by a plane wave at around
440 nm (purple) enhances the local electric field variation inside its feed gap. QSs with an electric
quadrupole transition may strongly emit at lower frequencies (green region).

4 Enhancing Dipole-Forbidden Transitions in Quantum Sys-

tems

The interaction of light with QSs is a main subject of quantum optics. To study this interaction,
QSs are frequently placed inside a cavity. The electromagnetic modes of the cavity are then used
to interact with the QS. Characteristic length scales on which the electromagnetic fields vary are
usually large compared to QSs. In this case it is suitable to assume the electric field as constant
across the entire QS. This so-called “electric dipole approximation” is widely applied in quantum
optics [195, 198, 233]. A characteristic length scale of QSs is the expectation value for the radial
distance of an electron in the hydrogen atom, the Bohr radius

a0 =
4πε0�

2

mee2
≈ 5.2918 · 10−11 m .

The electric dipole approximation is usually fulfilled because a0 is much smaller than wavelengths
in the visible. Transitions that are not related to an interaction within the electric dipole approxi-
mation are usually termed dipole-forbidden or just “forbidden” because their transition probabilites
are extremely weak.

But in the case of near-field interactions the situation can change dramatically. In 2002, Kawa-
zoe et al. [234] demonstrated that closely placed QDs (CuCl cubes) exhibit an energy transfer that
cannot be understood within the electric dipole approximation. The energy transfer was attributed
to the spatially strongly varying field close to the QDs - a direct observation of forbidden transi-
tions driven by a near-field interaction. The advances in nanotechnology during the last decades
have raised the interest in forbidden transitions using plasmonic structures [76,77,235,236].

Especially transitions related to an electric quadrupolar interaction seem to be interesting as
magnetic dipole emissions can be selectively investigated using comparably simple interference
techniques [73]. Because of the strong field confinement in the feed gap of NAs, they are per-
fect candidates to study forbidden transitions. They may be designed to locally enhance certain
multipole components. This approach has been recently investigated in the context of metamate-
rials [237] and optical vortices [238] as well.

Conceptionally, forbidden transitions of QSs are equivalent to dark modes of plasmonic struc-
tures [239,240]. Moreover, these dark modes may be used to couple to QSs [84,241,242]. It seems
only a matter of time until forbidden transitions of QSs can be used as a channel to investigate
light-matter-interactions without the often self-imposed electric dipole approximation. New effects
might be explored and applications may benefit from novel spectroscopic schemes, nonclassical
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light sources or enhanced quantum information processes.

In the following we shall first discuss forbidden transitions in the context of a plane wave
excitation (Sec. 4.1). After this, we shall introduce a general scheme to understand the interaction
of QSs to electromagnetic fields composed of arbitrary multipole components (Sec. 4.2). This will
enable to investigate the enhancement of an electric quadrupole interaction by a NA (Sec. 4.3). A
quadrupolar interaction cannot be seen as an isolated process. Thus we will consequently analyze
the dynamics of a three-level system driven by a quadrupole absorption (Sec. 4.4). I will be
outlined how the NA mediated enhancement of a quadrupole absorption leads to a luminescence
enhancement of the QS. This section is largely based on Ref. [78].

4.1 Plane-Wave-Excitation of Forbidden Transitions

Let us first try to understand why higher-order transitions are usually called forbidden. To do so,
we calculate the absorption rate of a hydrogen-like QS with atomic number Z subject to a plane
wave illumination in a semiclassical approach. This requires an analysis of multipole expansion
of the electromagnetic field of a plane wave. Fortunately, we do not have to use an expansion in
vector spherical harmonics in this case. Instead, we may just perform a spatial Taylor expansion
of the fields and use some characteristic numbers to find the transition rates. The electromagnetic
field shall be at resonance with the transition of the QS. Then we can concisely use ω ≡ ωmn, since
transition and field oscillation frequencies coincide.

For an x-polarized plane wave, the electric and magnetic fields can be expanded in close vicinity
to the quantum system at rqs = 0 as

E (r, t) =
E0

2

[
ei(kz−ωt) + e−i(kz−ωt)

]
ex ,

E (r, t) ≈ E0

2

[
(1 + ikz) e−iωt + (1− ikz) eiωt

]
ex

= E0 [cos (ωt) + sin (ωt) kz] ex , and

B (r, t) ≈ −E0

c
cos (ωt) ey .

The electric and magnetic coupling potentials [Eq. (21) and Eq. (22)] are given by

Ve (r, t) = −eE (r, t) · r ≈ −e [cos (ωt) + kz sin (ωt)]x and

Vm (r, t) =
µB
~

B (r, t) · L ≈ −µB
~
E0

c
cos (ωt)Ly .

Comparison of Transition Rates

In Ve (r, t), the first term corresponds to an electric dipole interaction and the second one to a
quadrupolar one. For the magnetic interaction Vm (r, t), only the first term needs to be taken into
account, i.e. the magnetic dipole contribution. We can use Fermi’s Golden Rule and characteristic
figures for the expectation values of certain operators, i.e. 〈r〉 = a0/Z and 〈L〉 /~ ≈ 1 for the
expected radius and angular momentum. The magnetic dipole contribution compared to the
electric dipolar one is (see also Ref. [243] for a more elaborate approach)

Γm,2
Γe,1

≈
∣∣∣∣
µB
~
E0

c
〈Ly〉

∣∣∣∣
2

/ |e 〈r〉E0|2 =
Z2~2

4m2a2
0c

2
=

[
Zα

2

]2

≈ 1.3 · 10−5Z2 (50)
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with the fine-structure constant α ≈ 1/137. For electric quadrupole excitations we find the simple
relation

Γe,2
Γe,1

≈ |k 〈r〉|2 =

(
ka0

Z

)2

≈ 4.4 · 10−7/Z2 for λ = 500 nm . (51)

Equations (50) and (51) provide a quantitative understanding of the order-of-magnitude difference
of dipole-forbidden (Γe,2 and Γm,1) and dipole-allowed (Γe,1) transition rates for a plane wave
excitation. The result is interesting in different ways:

1. The electric quadrupole rate is always much weaker than the magnetic dipole contribution at
optical frequencies. This result is rather general and is supported by explicit calculations in
the trivalent lanthanide series [244]. It explains why at least magnetic dipole transitions have
drawn much attention lately and electric quadrupole transitions have been less considered
[73,75,126,204,245].

2. The electric quadrupole contribution gets even weaker for high atomic numbers Z as the
expectation of the radial distance 〈r〉 of electrons for a given quantum number n lowers with
increasing Z. On the other hand, larger n can also be used to increase 〈r〉 and to enhance
higher order contributions, which explains the possibility to study forbidden transitions with
Rydberg atoms [246–248].

3. Regarding the ratios between Γe,1 , Γm,1, and Γe,2, it can be stated that higher order excita-
tions do not play any role if they are energetically close to dipole-allowed optical transitions.
Hence, the electric dipole approximation can be used most of the time [195, 198, 233]. This
finding is also supported by explicit calculations of the 1s→ 2p transition of hydrogen atoms
taking into account all multipole moments [249]. In this case, one finds that the ratio of
the transition rate for the full calculation to one employing the electric dipole approximation

result amounts to a factor of 1/
[
1 + {(2/3) ka0}2

]2
≈ 1− 8/9 (ka0)

2.

The electric dipole approximation is therefore very well justified for plane-wave-interactions in the
visible spectrum.

4.2 Semiclassical Multipole Coupling

Higher order transition rates are generally much lower than electric dipolar ones if a QS is excited
by a plane wave. But in plasmonics, the situation may change dramatically, and the self-imposed
restriction to a plane-wave excitation can be lifted. Before we show this explicitly, we need to
expand the local field at the position r0 of the QS. A spherical multipole expansion is a standard
way to achieve this expansion in classical electrodynamics. Noteworthy, spherical and cartesian
moments are often used to characterize molecular moments [250].

In a coordinate system with origin r0, the electromagnetic fields can be expanded as [78]

E (r, ω) =
∑

m,n

[pmn (ω; r0)Nmn (r− r0, ω) + qmn (ω; r0)Mmn (r− r0, ω)] and (52)

B (r, ω) =
ε (ω)

ic

∑

m,n

[qmn (ω; r0)Nmn (r− r0, ω) + pmn (ω; r0)Mmn (r− r0, ω)] . (53)

The Nmn and Mmn are vector spherical harmonics and ε (ω) is the relative permittivity of the
surrounding medium (see Refs. [132, 153, 251] for further details). Since the fields are evaluated
around the position r0 of the QS, the Nmn and Mmn are evaluated around the coordinate origin,
too. They have to be calculated in terms of the spherical Bessel functions jn (kr) which are regular
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at r = 0 [154]. This approach is different from the usual far-field expansion in terms of outgoing
spherical Hankel functions of the first kind h1

n (kr), which diverge for r → 0.

The pmn and qmn denote the complex electric and magnetic multipole coefficients, respectively.
In particular, n = 1 refers to dipole contributions, n = 2 to quadrupoles and so on. Please note
that pre-factors of the pmn and qmn are often variable in the literature. Therefore we shall only
discuss relative changes of the local multipole contributions for simplicity. With the help of Eqs.
(52) and (53) we have found an expression for the local electric and magnetic fields in terms of
their multipole coefficients pmn and qmn.

Electric Multipole Coupling and Transition Rates

In the following, we are only interested in the electric coupling Ve (r, t) = −eE (r, t) · r. For our
analysis of transition rates, we will assume the validity of Fermi’s Golden Rule [Eq. (15)] and
a time-harmonic excitation field of the form E (r, t) = E (r) e−iωt/2 + c.c.. The vector spherical
harmonics can be further used to show that the electric coupling ∝ E · r depends only on the
electric multipole coefficients pmn, namely

Nmn (r) · r =
n(n+ 1)

k
jn (kr)Pmn (cos θ) eimϕ

≈
√
π

2n+1 (n+ 1/2)!
(kr)

n
Pmn (cos θ) eimϕ +O

(
[kr]

n+2
)

and

Mmn (r) · r = 0 . (54)

The treatment of the QS via Schrödinger’s equation is a non-relativistic approximation, whereas
the electromagnetic field is inherently relativistic. This approximation is justified as long as the
QS is small and retardation effects along the QS’s wavefunction can be neglected. If this is no
longer the case, one would have to use the Dirac equation. In the nonrelativistic case, however, it
is possible to understand the coupling of the QS to the electromagnetic field within a quasistatic
approximation which is outlined in App. B.3. Such an approach seems well-suited if one studies
small NAs that can be fully described in a quasistatic approximation [85]. But as we have already
outlined in Sec. 2.2, such NAs generally exhibit a very low efficiency η and might only be suited
to study certain effects in theory.

With the help of Fermi’s Golden Rule [Eq. (15)], we find that the transition rate caused by a
purely electric coupling is given by [78]

Γeij (r0) =
2πe2

~2

∣∣∣∣∣
∑

n,m

pmn (r0, ω) 〈i|Nmn (r− r0) · (r− r0) |j〉
∣∣∣∣∣

2

δ (ωij ± ω) . (55)

This result explicitly describes the contribution of all multipole coefficients to Γeij . However, an
evaluation of Eq. (55) for a general QS is quite involved, since the amplitudes of the matrix
elements,

Mij
mn = 〈i|Nmn (r− r0) · (r− r0) |j〉 , (56)

might be comparable for different multipole orders n. Fortunately, this is not the case for hydrogen-
like atoms with (almost) spherically symmetric atomic potential. For other molecules with strong
deviations from spherical symmetry, higher-order matrix elements contribute significantly [252].
This is very important since such molecules might be much more suited than hydrogen-like atoms
to investigate forbidden transitions.
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Re-visiting the results of Sec. 4.1, we state that |pm1| � |pmn>1| holds for a plane wave
and the electric dipole approximation is very well justified. It might even hold for QSs for which
the dipolar matrix elements are comparable in magnitude to higher order matrix elements, i.e.∣∣∣Mij

m 1

∣∣∣ ∼
∣∣∣Mij

mn≥2

∣∣∣. Thus, a control of the local higher order multipole coefficients drastically
enhances the possibilities to interact with QSs as, in principle, allMij

mn might be used in contrast
to a plane wave interaction.

Up to now, all considerations were merely theoretical. In the following we shall numerically
analyze how specifically designed NAs can be used to enhance quadrupole transitions.

4.3 Enhancing Quadrupole Transition Rates

A characteristic length scale for the variation of the electromagnetic field is the wavelength λ. On
the other hand, a NA can support localized plasmonic modes that may vary in the order of a few
nanometers. This should result in a huge increase of higher order multipole coefficients.

A general discussion of the influence of higher-order effects for a real QS can become quite
involved, since Eq. (55) predicts an influence of all multipole coefficients pmn for electric transitions
if the Mij

mn are not vanishing. Thus, to simplify our analysis, we shall assume that the QS we
consider only exhibits electric quadupolar transitions in the frequency range we are interested in.
Then we may just ask to which extent a suitably designed NA is able to enhance the local electric
quadrupole coefficients pm2.

However, before we can proceed with an analysis of numerically calculated transition rate
enhancements, we have to clarify the general geometry of the NA and the illumination scheme.
We shall also introduce a figure of merit to describe the quadrupole enhancement quantitatively.

Geometry of the Nanoantenna and Illumination Scheme

To obtain a strong enhancement of the local quadrupole coefficients pm2, a strongly varying field
is needed. There are different means to achieve this goal. For example an extended feed line can
exhibit a large effective index such that its modal wavelength is drastically reduced. However, the
quadrupolar enhancement is not large enough, since effective indices are usually below ten without
the use of high-index permittivities [253, 254]. For this reason, only a strong field localization in
the NA feed gap gives rise to an enhancement of quadrupole coefficients by orders of magnitude:
The field gets not only enhanced, but it also varies on very small length scales. A geometrical
variation of the NA surface naturally leads to a variation of the fields close to it. For metallic tips
it has been demonstrated that a local radius of curvature can be as small as a few nanometers
[255]. Enhancements of quadrupole coefficients by several orders of magnitude close to comparable
structures may be expected because of their extensive surface variations.

To also obtain a high emission efficiency at a subsequent transition, a dimer NA is preferable.
A conceptionally simplified NA with a strongly curved surface could consist of two ellipsoidal
particles with a small feed gap. Such a NA design results in a strong enhancement of quadrupole
components due to a very high field confinement inside of the gap [80, 89]. But it is possible to
further simplify the geometry and to study NAs made of two silver spheres [Fig. 11 (a)]. These
NAs are potentially accessible via chemical self-assembly [132,256].

The spherical NA elements shall have a radius of 30nm. In this way, the NA’s radius of
curvature is still well below the illumination wavelength, but the NA is also large enough to
circumvent a low efficiency for subsequent luminescence processes (Sec. 2.2). Furthermore, the
feed gap width d shall be small enough to permit a strong field enhancement inside of it, but
large enough to prevent tunneling and nonlocal effects [69,71,257]. We have chosen d = 3nm and
d = 10nm for which the onset of these effects should be still a minor contribution.
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Because of the rotational symmetry of the NA, two main illumination schemes exist: the electric
field of a plane wave either parallel or normal to the rotational axis. Only for parallel illumination
the largest field concentrations and thus also the largest field variations can be found inside the
gap. Noteworthy, this is not the configuration with the largest far-field quadrupole response of the
NA itself. To achieve this, a much bigger distance between the spheres is needed such that the
induced dipoles oscillate with a π phaseshift. It is thus very important to once again emphasize the
difference between a local expansion [spherical Bessel functions jn (kr)] and a scattering expansion
[outgoing spherical Hankel functions of the first kind, h1

n (kr)] of the electromagnetic fields.

Quantification of Quadrupole Enhancement

The local multipole coefficients are numerically determined in a spherical coordinate system. Nev-
ertheless, the more familiar Cartesian coordinate system with electric dipole coefficients pi and
quadrupole coefficients Qij , i ∈ {x, y, z} will be used to express the results. The pi and Qij are
given as linear combinations of the pm1 and p2m, respectively [132,251]. To quantify the quadrupole
enhancement, we compare local quadrupole components to the strongest quadrupole coeffient of
the electric field of the illuminating plane wave. This is the xz-coefficient Qfs

xz ∝ i (p2−1 − p21).
We define

αloc
ij (r, λ) =

∣∣∣∣
Qna
ij (r, λ)

Qfs
xz (λ)

∣∣∣∣
2

as the local quadratic enhancement of the ijth quadrupole coefficient of the NA. The illumina-
tion scenario in the vicinity of a NA is denoted with the superscript “na”, without NA with the
superscript “fs”, respectively. We use the quadratic enhancements because the absorption rates de-
scribed by Fermi’s Golden Rule are related to the intensity of the electromagnetic field’s multipole
coefficients [cf. Eq. (15)].

It may be assumed that an ensemble of QSs is present inside the feed gap or a very precise
placement of a quantum system is not possible. Therefore it is preferable to define a measure of
the quadrupole enhancement with respect to a certain region Ω as

αij (λ) =

ˆ
Ω

αloc
ij (r, λ) dV .

The quadrupole enhancement for a specific NA shall be quantified by αij in relation to an inte-
gration domain Ω. The electric field inside the feed gap is almost rotationally symmetric around
the x-axis since the NA dimensions are well below optical wavelengths. It is thus sufficient to
take the integration domain Ω as a two-dimensional surface in the x-z-plane to get a measure
for the corresponding three-dimensional quadrupole enhancement. We chose Ω as a fixed square
with dimensions ∆x = 13nm and ∆z = 30nm, irrespective of the NA feed gap width d [Fig. 11
(c)]. Because of the fixed integration domain, Ω has a large overlap with the metallic dimers for
d = 3 nm, where αij = 0. Nevertheless, much bigger αij is expected for d = 3 nm since the field
localization is dramatically increased compared to d = 10nm.

Numerical Results

The numerical calculations of the local multipole coefficients are performed with Mühlig’s imple-
mentation of Xu’s approach to analyze the scattering of multiple spherical objects [132, 153]. For
the investigated scenario, the Qxz coefficient is the dominant contribution in the NA gap and our
following analysis can rely on αxz and its local counterpart.

Figure 11 (b) shows αxz for the two gap sizes. For d = 10nm αxz is indeed more than an
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Figure 11: (a) The silver dimer configuration and the illumination scheme. In the employed
coordinate system, the x-axis is the rotational axis. The incoming plane wave is polarized parallel to
the rotational axis and propagates perpendicular to it along the z-axis. (b) Integrated quadrupole
enhancement αxz (λ) for d = 3nm (red line) and d = 10nm (blue dashed line). (c)-(e) Local
quadrupole enhancement αloc

xz (r, λ) for d = 3nm at λ = 437nm for different scalings and zooms.
(c) Linear scaling, (d) logarithmic scaling, (e) closeup of (c) for the integration domain Ω.

order of magnitude smaller than for d = 3nm. Furthermore, the smaller separation leads to a
general redshift of αxz. Two distinct peaks in both curves can be observed. These resonances
can be explained by a dipole-dipole coupling of the silver spheres at larger wavelengths and a
quadrupole-quadrupole coupling at smaller wavelengths, respectively. For d = 3 nm, a distinct
maximum at λ ≈ 437 nm of αxz (λ) > 106 can be observed. This result is very encouraging. It is
roughly in the order of magnitude of the usual difference between electric quadrupole and electric
dipole transitions rates of hydrogen-like atoms subject to a plane wave.

The local distribution of quadrupole enhancement, αloc
ij at λ = 437nm, are outlined in Figs. 11

(c) - (e). In Fig. 11 (c) and (d), αloc
ij (r, 437 nm) is displayed using a linear and a logarithmic scale.

It is obvious that the strongest αloc
ij are located in the feed-gap creating two (almost) symmetric

stripes with a width of approximately 5 nm each [see Fig. 11 (c) and (e)]. Because of symmetry
reasons, αloc

ij is very small close to the rotational axis: the electric field is strongest here and
gets weaker outwards. A saddle point of the electric field with vanishing quadrupole coefficients is
formed on the rotational axis. Moreover, αij indicates quadrupole enhancements by a few orders of
magnitude also outside of the feed gap [Fig. 11 (d)]. This enhancement might be already sufficient
to observe dipole-forbidden transitions.

4.4 Quadrupole-Driven Dynamics of a Three-Level System

We have demonstrated that NAs can be used to enhance the quadrupole field components by or-
ders of magnitude. But to exploit this interaction for interesting studies or new applications, it
is extremely important to know what kind of benefits one could get using this enhancement. To
discuss the limitations of these benefits, we shall analyze the simplest QS excited by a quadrupole
absorption. So the first arising question is: Does a two-level-system exist that exhibits a quadrupo-
lar transition but no competing dipole transition? If this would be the case, the analysis would
significantly simplify. But unfortunately the answer is “no”, as we can see from a simple calculation.

As outlined in App. B.3.1, the matrix elements Mij
mn may be approximated in a quasistatic
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manner. Then the quadrupole matrix elementsMij
m 2 are related to their Cartesian counterparts

Mij
xkxl

∝ 〈i| Qxkxl
|j〉, with Qkl = 3xkxl − r2δkl. Thus, to analyze the Mij

xkxl
, it is sufficient

to analyze matrix elements of the form 〈0|xkxl |1〉. However, using the identity operator 1 =

|0〉 〈0|+ |1〉 〈1| of the two-level system yields

〈0|xkxl |1〉 = 〈0|xk [|0〉 〈0|+ |1〉 〈1|]xl |1〉 = 〈0|xk |0〉 〈0|xl |1〉+ 〈0|xk |1〉 〈1|xl |1〉 .

Obviously, 〈0|xkxl |1〉 is only different from zero if at least one of the dipole transitions 〈0|xk/l |1〉
is nonvanishing as well. So, an isolated quadrupole transition cannot occur in a two-level system.
Hence, to analyze the dynamics of a process that is only driven by a quadrupole transition, we
need to consider at least a three-level system. For such a system, the same matrix element is given
by

〈0|xkxl |2〉 = 〈0|xk [|0〉 〈0|+ |1〉 〈1|+ |2〉 〈2|]xl |2〉
= 〈0|xk |0〉 〈0|xl |2〉+ 〈0|xk |1〉 〈1|xl |2〉+ 〈0|xk |2〉 〈2|xl |2〉 .

We can assume that the dipole matrix elements 〈0|xk/l |2〉 vanish, such that 〈0|xkxl |2〉 = 〈0|xk |1〉 〈1|xl |2〉.
Then, by energy conservation, the dipole transitions 〈i|xk/l |i+ 1〉 are well separated from the
quadrupolar transition and all transitions may be treated independently.

The system we shall analyze is a three-level system driven by a quadrupole absorption followed
by two consecutive dipole transitions [see Fig. 12 (a)].

4.4.1 Rate Equation Description

To analyze the dynamics of the three-level system, we shall restrict ourselves to a rate equation
approximation. In this approximation any information about coherences is lost and it is further
only valid for slowly varying amplitudes of the illuminating field [198]. On the other hand, it is
possible to describe the steady-state of the three-level system in a very concise form, which seems
impossible for a fully quantum treatment. In this sense, we deal with the classical description of
the electromagnetic field and an approximate description of the QS. In this semiclassical picture,
the three-level system is governed by the equations

ṅ0 = γ10 · n1 − Γ02 · n0 ,

ṅ1 = γ21 · n2 − γ10 · n1 , and

ṅ2 = Γ02 · n0 − γ21 · n2 , (57)

where ni is the occupation probability of the ith level. Here, the γij denote the spontaneous emission
rates from the ith to the jth level and Γ02 denotes the excitation rate of the quadrupole transition
[see again Fig. 12 (a)]. Please note that stimulated emission processes are neglected. Furthermore,
Eq. (57) solely describes irreversible dynamics. It is thus valid only in the weak coupling regime.
This approximation is reasonable, because the NAs under consideration are rather large such that
the strong coupling limit is unlikely to be reached (cf. Sec. 6).

It is worthwile to compare the emission properties of the QS with NA compared to the QS in
free space. If we regard the three-level system as input-output system, the luminescence rate from
|1〉 → |0〉, i.e.

ṅrad
1 = γrad

10 · n1 , (58)

is an important quantity. The dipole transition |2〉 → |1〉 is assumed to be nonradiative at rather
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low energies. In that case, ṅrad
1 may act as a benchmark of the driving process and may be used

in NA enhanced spectroscopic schemes or as a light source with special characteristics [89].
In Eq. (58), the emission rate γrad

10 refers to the radiative part of the relaxation rate γ10 =

γrad
10 + γnonrad

10 . The nonradiative relaxation may be caused by different physical processes of the
NA or the QS. For simplicity, we assume that the internal quantum efficiency of the luminescence
is unity, i.e. γrad,fs

10 ≡ γfs
10, but a generalization is straight forward (cf. App. A.4). Hence, the

nonradiative part γnonrad
10 is only caused by dissipation of the NA (Sec. 2.2). These losses are again

characterized by the effiency of the NA, η = γrad
10 /γ10.

The luminescence enhancement ṅrad,na
1 /ṅrad,fs

1 is a suitable figure of merit to compare the lumi-
nescence of the QS in the NA scenario to that in free space. Using this quantity, we shall analyze
Eq. (57) in the steady state to encounter three different dynamical regimes of the QS. Before doing
so, the transition wavelengths and transition rates in free space shall be specified.

Transition Wavelengths and Rates

The quadrupole transition is assumed to take place at a wavelength of λ02 = 437nm, for which we
achieve the maximum quadrupole enhancement of the investigated silver dimer NA. We assume
that after the quadrupole absorption a successive quadrupole emission [175] is not likely. This
implicitly assumes that the subsequent relaxation into the intermediate level |1〉 at λ21 = 3.47 µm
with rate γ21 is much faster than a quadrupole relaxation. The second dipole transition takes
place at λ10 = 500nm because of energy conservation. The rate γ21 shall be caused by an internal
relaxation process of the QS and is thus independent of the electrodynamic environment, contrary
to γ10.

The difference between γij and Γ20 is that [by virtue of Eq. (55)] the quadrupole absorption
rate Γ02 depends on the local quadrupole coefficients of the electric field. Thus, Eq. (57) implicitly
depends on these components and we have to define ratios between these constants for a certain
plane-wave intensity I0 without NA. At I = I0, we take Γfs

02 = 10−5γ21, and γfs
10 = 10−2γ21, that

is Γfs
02 = 10−3γfs

10.
The chosen energies of the three-level system correspond to hydrogen-like atomic systems, for

which quadrupolar transitions are possible e.g. from an s to a d-orbital [258]. With an energetically
intermediate p-orbital, the studied three-level system can be interpreted as a simplified model for
hydrogen-like atoms in the notation |0〉 =̂ |s〉, |1〉 =̂ |p〉, and |2〉 =̂ |d〉. Nevertheless, the actual
energy differences depend on the involved levels: potassium has a quadrupolar transition λ4s→3d ≈
446nm with λ4s→4p ≈ 770nm and λ4p→3d ≈ 1.18 µm. The next alkali atom is rubidium with
λ5s→4d ≈ 516 nm, λ5s→5p ≈ 780nm and λ5p→4d ≈ 1.4 µm. For caesium, we find λ6s→5d ≈ 685 nm,
λ6s→6p ≈ 894 nm and λ6p→5d ≈ 2.9 µm. However, Lithium and Sodium have quadrupolar transition
energies in the near-UV with wavelengths around 300nm.

Please note that a single photon decay from an s-orbital to another s-orbital with a lower
quantum number is strictly forbidden as photons are bosons with unit spin. Such decays can
only be achieved by a real two-photon emission [259], which can be described within second order
perturbation theory (cf. App. B.1).

4.4.2 Steady-State Solution

Equation (57) implicitly satisfies the conservation of probability n1 +n2 +n3 = 1, since
∑
i ṅi = 0

holds. The probability conservation can be used to determine the steady-state luminescence ṅrad
1

of the QS. Setting ṅi = 0, we find

ṅrad
1 = γrad

10 · n1 = γrad
10 ·

γ21 Γ02

γ10 γ21 + γ21 Γ02 + γ10 Γ02
, (59)
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as derived in App. B.4. Then, the luminescence enhancement can be calculated as

ṅrad,na
1

ṅrad,fs
1

=
γrad,na

10

γrad,fs
10

· Γna
02

Γfs
02︸ ︷︷ ︸

Purcell effect and

quadrupole enhancement

· γ
fs
10 γ21 + γ21 Γfs

02 + γfs
10 Γfs

02

γna
10 γ21 + γ21 Γna

02 + γna
10 Γna

02︸ ︷︷ ︸
dynamics of QS

. (60)

Obviously, the ratio ṅrad,na
1 /ṅrad,fs

1 is not only influenced by an enhancement of the quadrupole
absorption, Γna

02/Γ
fs
02. The enhancement of the spontaneous emission rate at λ10, γ

rad,na
10 /γrad,fs

10 , is
important, too. Furthermore a term is essential that can be attributed to how fast the QS is able
to transfer the energy through the different levels by its internal dynamics.

Limiting Cases

For the present NA design, the enhancement of γ10 is strong enough such that γna
10 � γ21 holds

inside the NA feed gap. Then Eq. (60) can be evaluated with respect to different limiting cases
for the intensity I to find simplified expressions for the luminescence enhancement. This is done
in the following and will help to explain the results in Fig. 12 (b) and (c) in detail.

1. Low Intensities. For very low intensities, Γ02 � γij holds both in free space and in the
vicinity of the NA. This case is for example interesting for emission of single photons where
the excitation should occur at energies different from the emission frequency as we will see
in Sec. 5. In this case, Eq. (60) simplifies to

ṅrad,na
1

ṅrad,fs
1

≈ γrad,na
10

γrad,fs
10

· Γna
02

Γfs
02

· γ
fs
10 γ21

γna
10 γ21

= η · Γna
02

Γfs
02

= NA efficiency × quadrupole enhancement (61)

since in free space γfs
10 = γrad,fs

10 . Obviously the luminescence enhancement is mainly influ-
enced by the NA efficiency η = γrad,na

10 /γna
10 and the quadrupole enhancement. The dynamics

of the QS do not play a major role as the absorption rate in the low intensity limit is the
actual bottleneck of the whole luminescence process.

2. High Intensities. For high intensities, it may be assumed that Γ02 � γij holds both in free
space and in the vicinity of the NA. In that case,

ṅrad,na
1

ṅrad,fs
1

≈ γrad,na
10

γrad,fs
10

· Γna
02

Γfs
02

· γ21 Γfs
02

γna
10 Γna

02

= η · γ21

γrad,fs
10

= NA efficiency × 102 . (62)

This result is interesting since it does not depend on the actual quadrupole enhancement. The
reason is that in the high intensity regime both relaxation processes are the bottlenecks of the
luminescence enhancement. In fact, this regime may be regarded as the saturation regime
which only profits from an enhancement of γ10 by the NA. According to our assumptions,
γna

10 � γ21, whereas without NA γfs
10 = γrad,fs

10 = 10−2γ21 � γ21, and the spontaneous emission
rate is the actual bottleneck.

3. Intermediate Intensities. There is a dramatic difference between low and high intensities.
The luminescence enhancement is drastically reduced in the latter case. Now let us consider
intensities comparable to I0 for which the ratios of the rates were defined in free space. At
I ≈ I0, Γfs

02 = 10−5γ21 � γ21 holds. But because of the huge enhancement of the local
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Figure 12: A three-level system driven by a quadrupole absorption for a silver dimer with d = 3nm
separation (see Fig. 11). (a) Schematic of the three-level system. (b) Luminescence enhancement
as a function of the intensity at the location x = 0 nm, z = 4 nm. Upper and lower dashed lines
are predictions for low [Eq. (61)] and high intensities [Eq. (62)]. (c) Luminescence enhancement
in the x-z-plane at I = I0. (d) NA efficiency η for a dipole emitting at λ10 = 500nm oriented
parallel to the x-axis. (e) Enhancement of the local dipole components compared to a plane wave
excitation withouth NA at λ02 = 437nm.

quadrupole components in the feed gap of the NA [Fig. 11 (b)-(e)], Γna
02 � γ21 may be

assumed, as the local quadrupole enhancement is roughly six orders of magnitude there.
Thus,

ṅrad,na
1

ṅrad,fs
1

≈ γrad,na
10

γrad,fs
10

· Γ
na
02

Γfs
02

· γ
fs
10 γ21

γna
10 Γna

02

= η · γ21
Γfs
02

= NA efficiency × 105 . (63)

The difference to the high intensity case is due to different limits with and without NA. With
NA, the absorption rate is still the fastest rate in the whole process, whereas in the case of
the isolated QS this rate is still the bottleneck.

Three limiting cases for different intensities have been investigated. The external driving field
strength influences the overall luminescence enhancement considerably. The importance of an
enhanced quadrupole absorption for a strong luminescence is mostly pronounced in the weak
excitation limit, whereas for higher excitation rates other processes become a bottleneck.

Numerical Results: Luminescence Enhancement

With the discussed limiting cases, it is able to interpret the results shown in Fig. 12 (b) and
(c). Figure 12 (b) displays the intensity-dependent luminescence enhancement of the three-level
system located at {x, y, z} = {0, 0, 4} nm, i.e. a position with very high enhancement of quadrupole
absorption. The dashed lines correspond to high and low intensity limits as given by Eqs. (61)
and (62). These lines indicate a perfect agreement with the numerically calculated values. Most
notably, the luminescence enhancement changes by more than three orders of magnitude. These
findings underline the necessity to investigate the internal dynamics of the three-level system.

Figure 12 (c) depicts the luminescence enhancement in the x-z plane at the excitation intensity
I = I0. In this case the intermediate intensity result should be applicable in the regions of strong
quadrupole enhancement. Using the calculated NA efficiency η ≈ 0.6 inside the feed gap at λ10 [Fig.
12 (d)], we find a perfect agreement to Eq. (63) in the regions of high quadrupole enhancement:
The quadrupole enhancement is saturated at ≈ 0.6 × 105. Further away from the center the
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enhancement of the local quadrupole absorption is not strong enough to realize Γna
02 � γ21 and a

transition to the low-intensity limit [Eq. (61)] can be observed. Hence, the quadrupole absorption
rate is not the limiting process inside the regions of strong quadrupole enhancement, which leads to
a luminescence saturation. Further away from the axis of symmetry, the quadrupole enhancement
becomes the limiting process but is still sufficiently strong to enable a luminescence enhancement
by more than four orders of magnitude for almost the whole integration region Ω except the NA
elements themselves.

The estimations provided by Eqs. (61), (62) and (63) yield a sufficient understanding of the
dynamical process that leads to the luminescence enhancement of the three-level system driven by
a quadrupole absorption within the employed rate equation model. Although a rather stringent
approximations to calculate simplified results was used, a fairly complex luminescence behavior
could be described.

Noteworthy, our results relied on the assumption that only a quadrupole transition contributes
to the absorption. However, as it is shown in Fig. 12 (e), the local dipole absorption rate of the
electric field is enhanced at λ20 by four orders of magnitude inside of the feed gap, too. This
dipole enhancement has to be considered if dipolar transitions are competing with the investigated
quadrupolar ones.

Concluding Remarks

In Sec. 4.1 it was shown that forbidden transitions are strongly suppressed for a plane wave
excitation in the optical spectrum. Afterwards, a theoretical framework was developed in Sec. 4.2
to describe the action of the electromagnetic field on a QS in terms of the field’s local multipole
coeffients. Based on this framework it was theoretically verified (Sec. 4.3) that NAs are very well
suited to enhance higher order multipole fields. As also noted by other authors [76,77], NAs render
forbidden transitions accessible.

In Sec. 4.4 it was demonstrated that a comprehensive understanding of the internal dynam-
ics driven by a dipole-forbidden transition is necessary to understand experimentally accessible
parameters such as the luminescence enhancement. This result is not only interesting and impor-
tant in the context of forbidden transitions but also for any kind of experimental realization of
a quantum process where internal energy conversions are involved. These findings underline that
multilevel systems usually exhibit much richer dynamics than two-level systems to which they are
often reduced to [260].

For simplicity, the analysis was restricted to a dimer NA with spherical elements. Nonetheless,
such a NA with a feed gap of 3 nm was suffient to achieve local quadrupole enhancements of more
than six orders of magnitude. It is clear that this is not the best design for the highest quadrupole
coefficients, as they are related to the local radius of curvature of a NA’s surface. Dimer NAs made
of recently fabricated sharp metallic nanotips [261,262] might be used to increase the feed gap while
maintaining the quadrupole enhancement in a given spatial region. In this case, quadrupole-driven
interactions in the visible might be easier accessible than with the investigated NA design. For
instance, a placement of a single QS and also a coupling to an ensemble of QSs might be simplified.

Applications using forbidden transitions in the visible spectrum have not been realized yet.
Nevertheless, the importance of magnetic dipole contributions for different light sources has been
demonstrated [73, 75, 263, 264]. It has also been shown that NAs can be used to transform the
dipole radiation of a QS into almost arbitrary multipole radiation [265]. This transformation can
be seen as the inverse process to a NA converting free-space radiation to higher-order multipole
components in the near-field. Accessing forbidden transitions in a deterministic manner with the
help of NAs will open new prospects, as these new interaction channels may be used in many ways.
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One could for example retrieve much more detailed information about spectroscopic samples, and
quantum communication devices may hugely benefit in the future: The locally addressable Hilbert
space is drastically increased, and new pathways open for the generation of nonclassical light. All
these applications may be realized when fabrication techniques can be used to produce suitably
designed NAs and position QSs with a high precision.

The treatment of forbidden transitions that was employed in this section has been performed
using a classical description of the electromagnetic field. Their quantization was not required
to understand the enhanced quadrupole interaction and the internal dynamics of the three-level
system. In the following section this approximation shall be dropped. We will use a quantization
of the NA’s electromagnetic field to understand its utilization for the generation of nonclassical
light.
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5 Ultra-Bright Single-Photon Sources

In the near future fabrication techniques might be available to enable sophisticated NA applications
that make use of enhanced couplings to QS. For a thorough theoretical understanding of the
involved light-matter-interaction it is essential to go beyond a semiclassical analysis: A great deal
of the interesting physics relies on the very quantum nature of the interaction. This step can
be achieved by the quantization of NAs in terms of their QNMs. In this section we detail how
such a fully quantum description can be used to calculate observables inaccessible by semiclassical
considerations. This approach is needed to understand the generation of so-called nonclassical
light, i.e. light that cannot be described by classical electrodynamics.

We shall specifically focus on the generation of single photons as an example for nonclassical
light. Single photons are easier to realize with the investigated hybrid systems compared to other
nonclassical light states2. The reason is that, in general, atomic QSs are already single-photon
sources and an interaction with the environment mainly alters the rate, efficiency and directivity
of the emission process [266]. The initial verification of single photons was achieved by Hanbury
Brown and Twiss in the context of stellar metrology in 1956 [267]. The first single photon source
in an experiment was realized by Clauser. He used the cascaded emission of two photons at
different frequencies of calcium atoms in 1974 [268]. Soon afterwards, Kimble et al. investigated a
continuous excitation of sodium atoms and studied the statistics of the emitted light in the context
of resonance fluorescence [269].

Nowadays, state-of-the-art technology permits the fabrication of single photon sources using the
spontaneous emission of molecules [270,271], defect centers in solids [272,273], and QDs [274–277].
Because of these achievements, applications of single photon sources are no longer out of reach [266].
Among them are, for example, single photon quantum cryptography [278], which was first realized
by Waks et al. [279] using the so-called BB84 protocol [280, 281], and single photon spectroscopy
of single molecules [282]. Hence, single photon sources enable secure quantum communication and
offer completely new possibilities for the study of QSs.

Single photon processes are often comparably robust against losses, as a dissipated photon
usually has no negative impact on subsequent processes. For instance, even the BB84 protocol
works for implementations using QSs with intrinsic losses and lossy communication waveguides
[283]. This is important because any NA based implementation will cause additional loss channels.

But one problem remains up to date: Single photon sources rely on the spontaneous emission
of a photon. However, the emission rates of emitters oscillating at optical or telecom frequencies
are usually rather low in the sub-GHz regime [86, 176]. Two main approaches exist to circumvent
this problem: Cascaded photon emisson to achieve more photon output per pump cycle [284]
and an enhancement of the spontaneous emission rate [44]. While the first approach is based on
a suitable design of the QS, the second one relies on a thoughtful design of the electrodynamic
environment of the QS, a “radiative engineering” approach. As we have already seen in Fig. 3,
NAs can drastically change the spectral density and cause a tremendously enhanced spontaneous
emission rate. We will focus on the “radiative engineering” approach in our investigations following
a number of theoretical [12, 56,82,97,285,286] and experimental investigations [141,287–290].

The radiative engineering approach is very promising but the emission rate drops considerably
in the strong coupling regime (see again Fig. 9, where the excited state population drops much
slower than in the weak coupling regime due to an ongoing energy exchange between QS and
NA). This puts a general limit on the maximal achievable Purcell factors. Another limitation for
the single photon emission rate has been overlooked so far: The question, how the nonclassical

2Exemplarily, the generation of squeezed light and entangled photons is shortly discuss in App. B.10.1 and
B.10.2.

48



character of the emitted light is influenced by the increased emission. A seminal paper by Akimov
et al. [287] has proven that the emitted light of an incoherently pumped QS coupled to a wire NA
is nonclassical. But it was not clear what happens if the emission rate is drastically altered by the
mutual interaction of the hybrid system. To bridge this gap will be one of the main goals in this
section which is organized as follows.

The choice of a two-level system approximation and the incoherent pumping scheme shall
be discussed first. We then introduce an analytical result for the emission rate of the hybrid
system consisting of QS and NA. In Sec. 5.3, the design of NAs to achieve ultrabright single
photon emission shall be investigated based on numerical calculations. We will also determine the
parameters needed to quantize the hybrid system. The quantization based on the introduced QNM
quantization scheme (cf. Sec. 3.4) will then be used to study the fully quantum interaction of QS
and NA (Sec. 5.4). It will also be shortly discuss why the second-order correlation function g2 (τ)

is a suitable figure of merit for the nonclassicality of the emitted light. This section is based on
Ref. [89].

5.1 Investigated Quantum System, Pumping Scheme, and Two-Level
Approximation

To keep the theoretical description as simple as possible, the QS shall exhibit as few as possible
energy levels. Moreover, the geometry of the NA shall be given in terms of a few parameters. It is
important to understand the physical consequences of these approximations.

The Need for a Third Energy Level

Let us thus first discuss the theoretical description of the pertinent QS. The simplest possible
model for a QS is a two-level system. Since a two-level-system can only store the energy of a single
photon, it can only emit single photons. A pump of the two-level-system with a so-called π-pulse
transfers a two-level system into its excited state [291]. The subsequent emission will then be a
single photon. This direct excitation scheme, however, has severe drawbacks.

First of all, one assumes that a π-pulse excitation source is present. But this seems at least
questionable if actual applications are envisioned. Here, the excitation of the QS shall be imple-
mented in a very simplistic (and reaonably priced) way. Such an excitation implementation might
be accomplished by electrically pumping QDs that leads to electroluminescence. This effect has
been reported a long time ago [292] and was also used for single-photon emission [277]. Moreover,
in the π-pulse pumping scheme the number of emitted photons is limited by the repetition rate of
the exciting source. For laser systems, repetition rates are typically in the MHz to GHz regime,
except in sophisticated ultrafast optics experiments [293].

Second, a two-level system is pumped at its emission frequency. Thus, a NA designed to
enhance the emission rate of a QS will generally also interact with the pumping field. This direct
excitation will also excite at least one NA mode into a certain state. The emission of the combined
system will then have characteristics of the single-photon emission by the two-level system and an
emission by the NA, which we may assume as coherent.

Ultimately, the emitted radiation loses its single-photon characteristics. This argument gen-
erally excludes the use of a continuous wave excitation at the emission frequency of the QS in
the presence of a NA. Thus, not only from a practical but also from a fundamental point of view
a direct excitation of the QS seems to be inadequate: The presence of the NA is useful for the
emission of single photons at high rates but also leads to classical light emission if pumping and
emission frequencies coincide.
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After having ruled out the use of a simple two-level system model because of the need for
a direct pump, a model system has to be chosen that is slightly more involved: a three-level
system indirectly pumped at a certain frequency and emitting at another one. Such a system is
conceptionally similar to that discussed in Sec. 4.4. There it turned out that its behavior may
strongly vary depending on the different transition rates involved (Sec. 4.4.2). Although a rate
equation approach was exploited, we may rely on the main results to find a very simple effective
description of the three-level system.

Two-Level Approximation

In the rate equation model employed in Sec. 4.4, we found the steady-state occupation probability
of the intermediate state as [Eq. (59)]

n1 =
γ21 Γ02

γ10 γ21 + γ21 Γ02 + γ10 Γ02
.

If we assume that the nonradiative relaxation rate γ21 is much higher than any other process, it
follows that

lim
γ21→∞

ṅrad
1 = γrad

10 · lim
γ21→∞

n1 = η γ10 ·
Γ20

γ10 + Γ20
. (64)

This solution is simply the steady-state solution of a two-level system with excitation rate Γ20 and
decay rate γ10. Thus, in a first approximation we may regard the three-level system as a two-level
system with effective pumping rate R = Γ20.

As stated before, a thorough analysis of a three-level system dynamics can be found in Ref. [260].
It is important to keep in mind that the limit of an effective two-level system is only meaningful if
the nonradiative relaxation rate γ21 is much larger than any other transition rate. In realistic QSs,
such relaxation times can be ultrafast. In QDs, intraband relaxation times in the sub-ps regime
can be assumed [294–296]. Thus it seems reasonable to analyze the single-photon emission of a
three-level system in a two-level approximation up to several THz.

5.2 Emission Rate Determination

By virtue of Eq. (64), a first estimation of the emitted photon rate has been obtained based on the
rate equation approximation. Although this result is useful already, we have to go a step further
because any information on its single photon character is missing. To get this information, a NA
quantization is inevitable. Using the QNM quantization scheme (Sec. 3.4), the interaction of the
three-level system with a NA will be described in the two-level approximation. This permits the
validity check of Eq. (64) and the calculation of γ10 in terms of parameters of the quantization
scheme.

Mathematical Description

Within the two-level model, the interaction of a QS to a single-mode NA can be described by the
Hamiltonian

H = ~ωna

(
a†a+

1

2

)
+ ~ωqsσ+σ− + ~κ

(
a† + a†

)
(σ+ + σ−) . (65)

Again, a (a†) are the annihilation (creation) operators of the NA state and σ− (σ+) the QS’s
annihilation (creation) operators, ωna is the eigenfrequency of the NA, ωqs that of the QS, and κ is
the coupling strength in the dipole approximation. For simplicity and to compare different hybrid
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systems, we shall assume that NA and QS are always on resonance, that is, we assume ωna = ωqs

from now on.
Equation (65) does not provide any explicit information about the state of the radiated light

field we are interested in. To get it, the use of a beam splitter transformation (BST) [297] is
required. The BST transforms an excitation of the NA into an excitation of the radiation field
with a probability equal to the NA efficiency η. However, the BST also involves a treatment of
further dissipative channels which increases the Hilbert space and complicates a detailed analysis.

Fortunately it suffices to calculate all quantities in the hybrid system picture and to determine
all observables simply replacing a → √ηa. For instance, the photon number expectation value
of the free field is calculated by the replacement

〈
a†a
〉
→ η

〈
a†a
〉
. This yields the mean emitted

photon rate η
〈
a†a
〉

Γ by the NA, in agreement with the considerations of the luminescence rate in
Sec. 4.4 [Eq. (58)]. Nevertheless, the state of the radiation field and the NA state are not exactly
equivalent.

Emission Rate of the Nanoantenna: Introducing Pump and Decay Rates

Two main ways that account for irreversible processes exist to solve the equations of motion
incorporating a pump rate R of the QS and a decay rate Γ of the NA. In the Heisenberg picture,
these parameters can be introduced phenomenologically. The equations of motion can be solved
directly to find the mean emitted photon rate

〈
ṅrad

1

〉
= η

〈
a†a
〉

Γ within the cold reservoir limit
(CRL). Here, a so-called adiabatic elimination of the QS operators in the RWA is performed (see
App. B.8 for the complete derivation and our Ref. [89] for further details). In this limit, any
reaction of the environment after dissipation by the hybrid system is neglected.

Technically, expectation values of fluctuation operators fi are neglected. The fi are introduced
in the Heisenberg equations of motion to preserve the canonical commutation relations both of
the operators describing NA and QS. For a weak interaction with the environment, i.e. for weak
pumping and loss rates, the expectation values of the fi are negligible compared to the operators
of the NA and QS. The CRL is a good approximation in this regime [86,195].

However, higher moments of the fluctuation operators are unknown. Consequently, higher
moments of the emitted light cannot be calculated accurately within the CRL. The emitted photon
rate is given by

〈
ṅrad

1

〉
= η γwc ·

R

γwc +R
with γwc =

4κ2

Γ
. (66)

This result is equivalent to Eq. (64) which was derived in Sec. 5.1 for a very fast nonradiative
intermediate relaxation rate in a three-level system. But we have not only verified Eq. (64), we
have also found an explicit expression for the spontaneous emission rate γwc as a function of the
system parameters in the QNM quantization scheme. Similar expressions to Eq. (66) have been
derived in the past [298].

Equation (66) provides a fundamental understanding for the design of hybrid systems for ultra-
bright single photon emission in terms of just a few parameters: the pumping rate R, the NA
efficiency η and the weak coupling emission rate γwc (or κ and Γ, respectively). Naturally, γwc is
related to the Purcell factor by F = ηγwc/γfs, where γfs is the free-space spontaneous emission rate
of the investigated QS. Two interesting limiting cases for R appear.

Emission Rate: Limiting Cases

In the weak pumping limit, where R � γwc shall hold,
〈
ṅrad

1

〉
→ ηR. In this limit, large Purcell

factors are irrelevant for the overall process. The pumping rate constitutes the key parameter. We
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have used an incoherent pump scheme, but in the weak pumping limit it seems reasonable that〈
ṅrad

1

〉
→ ηR also holds for other pumping schemes, too: A low energy flux to excite the QS might

always be the main parameter of the emission rate that can be achieved by the hybrid system.

On the other hand, if R � γwc, then
〈
ṅrad

1

〉
→ ηγwc. Only in this strong pumping limit,

strongly enhanced emission rates can be accomplished by an appropriate NA with F � 1. So
only for R� γwc the NA can be exploited to its full capacity. The result for the emission rate in
the strong pumping limit can, however, only be considered as a tendency. The CRL may not be
applicable and also the pumping rate may exceed the nonradiative rate γ21. Furthermore, a very
strong pump may also lead to an excitation of an NA mode with more than one photon. Then the
single-photon character is lost (cf. Sec. 5.4).

Equation 66 for the determination of the photon emission rate is an important result. It puts
studies that solely relied on a realization of high Purcell factors for bright single-photon sources
into a more general context where also the pumping rates are taken into account. The simplicity
of the formula for the emitted photon rate was achieved at the expense of some more or less crucial
approximations with regard to the NA-QS-interaction, the CRL and RWA. But with the use of the
introduced NA quantization scheme we have access to the parameters κ, Γ and η. They are needed
to investigate the quantum properties of the hybrid system and of the emitted light in terms of
a density matrix formulation, which shall be discussed in the following. First we will concentrate
on the design of suitable NAs based on the hybrid system’s parameters which appear in Eq. (66).
Afterwards we will check the validity of Eq. (66) and evaluate the statistics of the emitted light
to further understand the limits of NA based ultra-bright single-photon sources.

5.3 Nanoantenna Design and Determination of Parameters

Theoretical studies are generally not bound to the limitations of experimental realizations. For our
search of a suitable NA design, we can take advantage of this freedom to keep the design as simple
as possible and to concentrate on the main aspects. Our goal is not to find the best NA design
for practical ultra-bright single photon sources with all the limitations imposed by technological
constraints. We aim to investigate the hybrid system’s quantum properties with respect to only a
few geometrical parameters that are related to the parameters κ, Γ and η.

Design Simplifications

Based on our experiences with geometries that are needed to achieve strong coupling (Sec. 6),
we restrict ourselves to a NA consisting of two identical silver spheroids with fixed aspect ratio
of major vs. minor axis of a/b = 5/3 [Fig. 13 (a)]. Furthermore, the ratio of NA feed to the
overall dimension plays a crucial role for the field enhancement inside of the feed gap: If any other
parameter is left constant, a smaller feed gap results in a higher coupling. So an investigation of
the feed gap width d seems also important.

As we have already fixed the ratio a/b, there is one free parameter left so far. Since the numerical
determinations of the required parameters are quite involved, a second entirely free parameter d is
not feasible. Thus we shall restrict ourselves to a few selected parameter combinations. There are
two options, namely a few fixed values for d or a few fixed ratios of a/d. We have chosen the latter
one, which we hereafter refer to as “conformal rescaling” of the whole NA: When the major axis a
is changed, any dimension of the NA is changed in the same manner. The reason for this approach
is that the coupling strength κ is related to mode volume Vm as κ ∼ 1/

√
Vm (Sec. 3.1). In the

conformal rescaling scheme, an increase in a might thus be directly related to κ. The ratio between
major axis of one of the NA elements and its feed gap width, a/d, shall be called “conformal ratio”.
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To not artificially enhance the achievable emission rates, a minimum feed gap width of dmin =

4nm is used, which is in the order of the size of the smallest available QDs [299]. It should
be emphasized that our analysis is not restricted to metallic NAs, but can also be applied to
dielectric ones [9]. The QNM quantization scheme is likely to be applicable for them as well (see
e.g. investigations of dielectric microspheres and spheroids [300,301]).

Hybrid System Specifications

The hybrid system shall be embedded in a medium with relative permittivity εd = 2.2, comparable
to fused silica. We used COMSOL [170] to perform the electromagnetic simulations. All parameters
are calculated following the QNM quantization scheme described in Sec. 3.4. For the calculation
of the coupling strength κ in the electric dipole approximation [Eq. (47)], a typical dipole moment
of |dqs| = 6× 10−29 Cm is assumed [302]. Such a dipole moment implies free space emission rates
γfs in the order of one GHz at optical frequencies. The dipole is further oriented parallel to the
major axis of the NA and centered inside the feed gap.

As the smallest NAs we investigated have spatial dimensions comparable to the mean free
path length of electrons in silver, we use a size-corrected model for the dispersive permittivity of
the material [303]. In this way the NA properties include size effects without taking microscopic
degrees of freedom into account that are much more involved to realize numerically [65,69]. Since
the dipole is oscillating along the major axis of the NA elements, plasmonic oscillations will occur
along this axis. Therefore this axis length is taken for the size corrections of the permittivity.

Numerical Results: Achievable Emission Rates

As we have mentioned already, a large coupling strength κ is needed for a high rate γwc. This
generally requires a small mode volume Vm and thus a small NA. But as seen in Fig. 3, a small
NA leads to lower efficiencies η. This trade-off between γwc and η can again be observed in Fig. 13
(b): Whereas larger NAs provide a higher efficiency, the QS emission rate γwc drops considerably.
Then, the emission rate in the limit of high pumping rates, η · γwc, generally exhibits a maximum
at a certain overall size of the NA. Regarding Eq. (66), this maximum can be considered as the
optimal NA design for a given conformal ratio: For sufficiently strong pumping rates, such a design
results in the highest photon emission rates.

The geometrical parameters of an optimal design can be found in Fig. 13 (c). Here, η · γwc

peaks for a/d = 5 5
6 at 2a ≈ 61nm with a feed gap of d1 ≈ 5 nm. The investigated larger conformal

ratios are expected to also exhibit maxima in η · γwc. Those maxima, however, are not visible in
Fig. 13 (c) as they occur below the minimal feed gap width dmin = 4nm. Generally, an optimal
NA design with a feed gap larger than dmin seems experimentally favorable as parasitic effects such
as electron tunneling can be avoided. For this reason we investigate NAs with the lowest conformal
ratio a/d = 5 5

6 that exhibit a maximum in η · γwc at d1 > dmin, even though these NAs provide a
slightly lower emission rate than those with higher a/d.

So far we discussed the optimal NA design considering the relative behavior of η, γwc, and their
product with respect to the NA size. However, it is also very important to discuss the maximal
achievable emission rate η · γwc on its own. The considered NAs with the lowest conformal ratio
have generally lower η · γwc. Nevertheless, their emission rates are still in the order of 1THz for
NAs with a ≈ 60nm (and thus d ≈ 10nm and an overall lateral dimension of L = 2a+d ≈ 130 nm)
with an efficiency of η ≈ 0.6 [see again Figs. 13 (b) & (c)]. These results are very promising even
if realistic experimental conditions are taken into account. These conditions might reduce the
emission rates by one order of magnitude because of an altered fabrication design, lower effective
pumping rates, poorer NA material, or certain QS specifics. If such a decrease is included, the
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Figure 13: Single photon emission by a hybrid system made of a NA and an incoherently pumped
two-level system. (a) Geometry of the investigated NAs: a dimer made of two silver spheroids with
major and minor axis a and b and feed gap d. The inset illustrates the incoherent pumping scheme
of the centered QS (red double-arrow). (b) QS emission rate γwc following Eq. (66) (circles) and
NA efficiency η (full points) for different conformal ratios a/d vs. major axis a. (c) Emission rate
of the hybrid system in the limit of strong pumping rates, η · γwc. (d)-(f) Different observables in
function of the major axis a for a/d = 5 5

6 . (d) Emitted photon rate depending on pumping rate R
based on density matrix calculations after Eq. (67) (large image) compared to predictions by Eq.
(66) (inset). (e) Large image: Density-matrix calculations of g2 (0) with the full Hamiltonian [Eq.
(65)]. Inset: The same, but with applied RWA. (f) Normalized fluorescence spectra at R = 1THz.

calculated η · γwc suggest single photon emission rates around 100GHz. This is still two order of
magnitudes faster than emission rates by isolated QSs.

For the investigated NA designs, the ratio of κ/Γ was well below unity {Fig. 1 (b) in Ref. [89]}.
This indicates that the weak coupling limit is valid and spontaneous emission processes can be
simply described by an exponential decay (see again App. B.5 or Fig. 9). Furthermore, the weak
coupling regime suggests that the reservoir, in this case the NA and its loss channels, merely act as
a passive background system [see again the Purcell factor as defined in the weak coupling regime
via the Green’s function in Eq. (36)] - a totally classical result [123]. Then it is no surprise that
the semiclassical rate equation approach yields the correct emission rates and an application of
a complicated quantization scheme seems unnecessary. But we will see in the next section that
even in the weak coupling regime effects can occur that cannot be explained using semiclassical
arguments.

5.4 Density Matrix Calculations: Emission Rate Verification and Single
Photon Characterization

To verify Eq. (66) and to calculate the statistical characteristics of the emitted light, it is suitable
to use a density matrix representation of the hybrid system (Sec. 3.4). Within this formulation,
NA loss and QS pumping rates Γ and R are introduced into the Lindblad-Kossakowski equations
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in the following way:

i~∂tρ (t) = [H, ρ (t)] + i~Ldecay [ρ (t)] + i~Lpump [ρ (t)] with

Ldecay [ρ (t)] =
Γ

2

{
2aρ (t) a† − ρ (t) a†a− a†aρ (t)

}
and

Lpump [ρ (t)] =
R

2
{2σ+ρ (t)σ− − ρ (t)σ−σ+ − σ−σ+ρ (t)} . (67)

The Hamiltonian describing the interaction is given by Eq. (65) and the constants Γ and κ are
determined as outlined in Sec. 5.3. Note that in our formulation of the QS dynamics other
irreversible processes such as the emission of the QS into other modes than the dominating NA
QNM as well as other dephasing mechanisms of the QS are neglected. Such processes can be easily
added to the system dynamics using corresponding Lindblad operators [298].

Equation (67) describes the evolution of the hybrid system in terms of a density matrix for-
mulation. This formulation can be used to numerically calculate all observables without further
approximations. The evolution of the system was computed with the help of a quantum optics tool-
box [304] and checked against an in-house code. In the following we shall focus on the steady-state
solution of Eq. (67), disregarding well-known transient processes [185].

As we have discussed before, we restrict ourselves to NAs designs with a conformal ratio of
a/d = 5 5

6 . Only one geometrical parameter is varied - the length of the major axis a. The calculated
photon emission rates depending on the pumping rate are depicted in Fig. 13 (d). The quantum
computation results are illustrated based on the density matrix formulation [Eq. (67), large image]
and on the analytical predictions [Eq. (66), inset]. There is virtually no difference between both
results in the investigated pumping region. This agreement underlines the applicability of our
analytical result. Note that the analytically determined emission rate is based on the RWA.
However, rapidly oscillating terms ~κ

(
σ+a

† + σ−a
)
are included in the density matrix calculations.

Regarding Fig. 13 (d), these terms do not play any significant role in the emission rate of the hybrid
system.

The Second-Order Correlation g2 (τ) as a Measure of Nonclassicality

One of our main motivations to employ a fully quantum approach is to verify the nonclassical
character of the emitted light. We shall now briefly discuss why the second-order correlation
function g2 is a suitable figure of merit to describe the nonclassicality of single-photon sources.
Explicit derivations can be found in App. B.9.

For a single-mode field polarized in x-direction, g2 can be written as [197]

g2 (r1, r2, t, τ) =
〈E?x (r1, t)E

?
x (r2, t+ τ)Ex (r1, t+ τ)Ex (r2, t)〉

〈E?x (r1, t)Ex (r1, t)〉 〈E?x (r2, t+ τ)Ex (r2, t+ τ)〉 .

For simplicity, we drop the spatial dependencies and concentrate only on the time difference τ . We
may assume a stationary field, i.e. the absolute time t is irrelevant. Then, g2 only depends on τ
and τ = 0, i.e. zero delay, can be calculated for three important special states of the light field:

g2 (τ = 0) =





2 for thermal radiation,

1 for coherent light, and

1− 1
n for a Fock state with n photons.

(68)

A Fock state |n〉 is an eigenstate of the number operator N = a†a, i.e. N |n〉 = n |n〉. Obviously
in the case of a single photon Fock state, g2 (0) = 0, which cannot be explained by classical
considerations since g2 (0) is always bigger than one there (App. B.9). Hence, if g2 (0) < 1, the
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light state is truly nonclassical and a single photon state may be seen as a prominent example.

Other figures of merit like the Fano factor and the Wigner function can also be used to analyze
the nonclassical character of a light state [197]. The Fano factor is slightly more general than g2, as
it is also a good figure for higher n Fock states. However, an advantage of g2 (0) is its independence
of the BST which we incorporate by the replacement a→ √ηa (cf. Sec. 5.2). This independence
is caused by our assumption that only the NA directly radiates. Then, g2 (0) of the radiated field
is equal to g2 (0) of the NA state. Hence, as we are mainly interested in the characterization of
single photon emission, g2 (0) is our main figure of merit to characterize the nonclassicality of the
emitted light.

It was already mentioned that the photon emission rates determined in Sec. 5.3 correspond
to a weak coupling of QS and NA. In this regime, the Markov approximation is valid and the
spontaneous emission rate γwc can be incorpareted into equations of motion for the QS. This
is done to describe resonance fluorescence within the well-known Bloch equations [185]. This
simplifies the calculations enormously, since the resulting description solely relies on an emission
of the QS into a passive background medium. As a consequence, g2 is directly determined by the
state of the QS. Hence,

g2 (0) =
〈σ+σ+σ−σ−〉
〈σ+σ−〉2

≡ 0 (69)

always holds for the Bloch equations since σ2
+ = σ2

− = 0. This result is very natural as a two-level
system cannot emit two photons at the same time if we disregard frequency conversions attributed
to higher-order perturbation terms. From a semiclassical scenario we would thus expect that g2 (0)

always vanishes.

Numerical Results: g2 (0) does not vanish

But our calculations for g2 (0) based on the QNM quantization scheme and fully quantum calcu-
lations reveal a drastically different result [Fig. 13 (e)]. We observe that, depending on the pump
rate R and the major axis length a, strong deviations of g2 (0) from zero occur. For a > 80nm,
g2 (0) is minimal for R ≈ 1THz and reaches values around 0.01, which is practically zero when
compared to state-of-the-art g2 (τ) measurements from QDs [305, 306]. Most notably, these hy-
brid systems are the largest under consideration and exhibit a relatively weak coupling and thus
comparably low γwc.

On the other hand, smaller NAs with stronger coupling (and higher γwc) generally feature larger
minimal g2 (0) reaching values larger than 0.1 at a . 35nm. Hence, we find a trade-off between the
maximum emission rate γwc of the QS and the nonclassicality of the emitted light. This trade-off
can be explained as follows: Because of a stronger coupling between NA and QS it becomes more
likely that energy is transferred from QS to NA before the NA is able to emit a photon. A stronger
coupling therefore leads to a higher probability of the NA to be in a higher excited state. This is
a clear deviation from the ideal single-photon Fock state and g2 (0) becomes larger with increased
coupling. On the other hand, if the coupling is comparably weak, a photon is likely to be emitted
by the NA before an energy transfer from QS to NA occurs and g2 (0) is close to zero.

Furthermore, we can see in Fig. 13 (e) that g2 (0) strongly depends on the pumping rate
R: for each NA there exists a local minimum in g2 (0) with respect to R. This minimum corre-
sponds to a pumping region in which the emitted light exhibits maximal nonclassical properties
by the respective NA. Higher and lower pumping rates lead to light states with less single-photon
characteristics.

In the high pumping region it is clear that a stronger pumping of the QS leads to a higher
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probability of the NA to be in a state with more than one photon. The increased NA excitation
ultimately results in increased g2 (0). The interpretation is more complicated for lower pumping
rates. To get a better understanding, we can compare g2 (0) for calculations with the full Hamilto-
nian to one employing the RWA, i.e. neglecting the fastly oscillating terms ∝ σ+a

† + H.c.. These
results can be seen in the inset of Fig. 13 (e). They show that there is no rise in g2 (0) for lower
pumping rates, in agreement to known results obtained within the RWA [298,307].

Hence, for low pumping rates, the fastly oscillating terms are responsible for the drop in non-
classicality: These terms lead to a distribution of energy from i.e. a state with no excitation neither
in the QS nor in the NA to a state with a photon in the QS and in the NA; σ+a

† |0, 0〉 = |1, 1〉.
This process is very unlikely. But it has the potential to change the steady state solution for low
pumping rates considerably and to cause deviations in the photon statistics that we see in a raise
of g2 (0). It has been pointed out lately by Zhang et al. [308] that g2 (0) can be lowered using
a bimodal cavity. We may interpret this system as two-mode NA within the QNM quantization
scheme. But their findings are based on the RWA and may be applicable for the investigated higher
pumping regime.

Because of the different geometries of the NAs, their resonance frequencies ωna are altered.
Under conformal rescaling, a larger NA generally causes a redshift of ωna. This is also reflected in
the calculated power spectra S (ω) which are illustrated in Fig. 13 (f); Please note again that we
have assumed that NA and QS are at resonance (ωna = ωqs). S (ω) can be calculated using the
Wiener–Khinchin theorem as the Fourier transform of the first-order correlation of a [185,195],

S (ω) ∝
ˆ
〈a† (0) a (τ)〉eiωτdτ .

For weak pumping rates for which power broadening does not occur, the linewidths of the spectra
are linked to the emission rate of the combined system. They are not related to the radiative rate
of the NA, as one might guess. So we find that hybrid systems with comparably low emission rates
not only exhibit superior single-photon characteristics of the emitted light. They also offer a much
narrower linewidth than those with stronger coupling.

Concluding Remarks

Based on the QNM quantization scheme, we analyzed the possibility to enhance single photon
emission rates using NAs. We introduced a simple approximate theory to analytically describe the
emission rate. With respect to the assumed incoherent pumping scheme we could reveal that not
only the spontaneous emission rate enhancement, i.e. the Purcell factor, plays an important role,
but also the achievable pumping rate of the QS is crucial. A fundamental trade-off between high
Purcell factors and NA efficiency η has to be accounted for the design of NAs for enhanced single
photon emission rates.

We have further shown that it is necessary to understand the emission of single photons by
suitable QSs taking into account the interaction with NAs. The reason is that the statistical
properties of the emitted light are drastically altered by this interaction, even in the weak coupling
regime. Based on density matrix quantum calculations we find a trade-off between high Purcell
factors and the single photon emission characteristics of the emitted light. This was only possible
because of the quantization of the NA that permits the calculation of the emitted light statistics.

Fundamental trade-offs have to be considered while designing hybrid systems. Nevertheless we
were able to show that miniaturized NA-enabled single photon sources with emission rates around
1THz sustaining good statistical properties are possible. The suggested designs further exhibit
experimentally feasible parameters of the hybrid system. Our results are not only important from
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a fundamental point of view, we also disclose the crucial parameters for NA-based ultra-bright
single photon sources. These parameters may serve as design guidelines for future devices. We
envision these nonclassical light sources to be extremely useful for quantum computation, quantum
cryptography, and advanced sensing applications.
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Figure 14: Schematic of the considered hybrid system. A NA made of three silver spheroids is
strongly coupled to two identical QSs in its feed gaps.

6 Reaching the Strong Coupling Regime

In the last Section it has been shown how NAs alter the spontaneous emission characteristics of
QSs. Another phenomenon that can only be understood in a fully quantum description is the
strong coupling of QSs. In this section we investigate how suitably designed NAs can strongly
couple to QSs.

Recent advances in nanotechnology allow the fabrication of gaps with a precision on the nm
scale [55] and precise placement of QSs [309]. The possibility of substantial spatial localization of
NA modes inside their feed gaps promises a strong coupling to QSs. In the strong coupling regime,
NAs and QSs exhibit a continuous energy exchange which replaces the irreversible dynamics of
spontaneous emission in the weak coupling regime (Fig. 9). In the infrared and visible spectral
domain, strong coupling has been achieved for non-plasmonic cavities [225,310,311].

If the strong coupling regime can be reached for plasmonic systems, promising applications
would come into reach. They include nanoscale signal processing at the single-photon level and
quantum computation [312]. Hence it is a challenging task, but equally rewarding. It has been
predicted for different kinds of plasmonic structures [79,80,313–317], see also Ref. [318] for a recent
overview. The system we consider consists of two identical two-level QSs symmetrically placed close
to a mirror- and rotationally symmetric NA (Fig. 14). We consider the coupling of a NA to two
QS because of the arising possibilities in ultra-fast interactions between the QSs mediated by the
NA. Furthermore it is easier to reach the strong coupling regime for two identical QSs, as we will
see shortly.

In Sec. 6.1 we shall describe our mathematical model of the hybrid system. Afterwards, we
investigate possible designs to reach the strong coupling regime (Sec. 6.2). The effects of strong
coupling on the dynamics of the hybrid system (Sec. 6.3.1) and its extinction spectrum (Sec 6.3.2)
will be discussed as well. This section is based on Ref. [80].

6.1 The Mathematical Model

As discussed before (Sec. 2.4 and Sec. 3.4), the theoretical description of hybrid systems may be
performed in several approximations. In the strong coupling regime, however, a quantization of
the NA and the QS is generally inevitable. This is emphasized by explicit comparisons to results
within a semiclassical model [80].

The NA shall be illuminated by a monochromatic plane wave which excites the NA mode that
interacts with the QSs. Then, the Hamiltonian of the hybrid system within the RWA (cf. Eq. 49)
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can be written as

H = ~∆ωqs

Nqs∑

j=1

σ
(j)
+ σ

(j)
− + ~∆ωna

(
a†a+

1

2

)
+ ~κ

Nqs∑

j=1

(
σ

(j)
+ a+ a†σ(j)

−
)

+ ~Ω
(
a+ a†

)
(70)

with ∆ωqs = ωqs − ωdr and ∆ωna = ωna − ωdr. Furthermore, the Rabi frequency Ω of the NA
illuminated by the external field can be calculated as Ω = dna ·Edr (r = 0) /2~ within the electric
dipole approximation. Here, dna is the NA’s dipole moment at the illumination frequency ωdr for
a single-photon excitation of the NA.

Because of the monochromatic drive, the Hamiltonian is expressed in the rotating frame of ωdr

(see App. B.7 for an explanation). The scattering response of the NAs to local dipole emitters has
been checked in numerical calculations to ensure that the electric dipole approximation is valid.
Then, the NAs can be approximated by single-mode harmonic oscillators. This approximation
simplifies our treatment considerably, but neglects the coupling to higher order modes. But since
the QSs are symmetrically placed (Fig. 14), we can assume that these modes are spectrally well
separated (Sec. 2.2). Hence, they constitute only a minor contribution to the investigated NAs.

The number of identical QSs is Nqs = 2 and their transition frequency is ωqs. The operators
σ

(j)
+ (σ(j)

− ) denote the creation (annihilation) operators of the jth QSs and a† (a) those of the NA.
There is only a single coupling constant κ due to the symmetric placement of the QSs. κ can be
calculated according to Eq. (47). Because of the intended strong coupling, we have further assumed
that there is no direct interaction of the illuminating field with the QSs. This approximation is
equivalent to the assumption that the interaction of the QSs to the NA is much bigger than to
other free-space modes.

The dynamics of the hybrid system is described by the Lindblad-Kossakowski equation [cf. Eq.
(46)]:

i~ρ̇ (t) = [H, ρ (t)] + i~Lna [ρ (t)] with (71)

Lna [ρ (t)] = −Γ

2

(
a†aρ (t) + ρ (t) a†a− 2aρ (t) a†

)
.

Here, ρ (t) is the density operator of the hybrid system and Lna [ρ (t)] is the Lindblad operator
describing the losses of the NA. Again, Γ = Γr + Γnr refers to radiative and nonradiative losses
of the NA. Typically, the radiative and nonradiative loss rates in the NA are much larger than
nonradiative decay and dephasing rates of the QS and we neglect such processes. These processes
can be easily incorporated with corresponding Lindblad operators.

6.2 Nanoantenna Designs

The aim is to design NAs to reach the strong coupling regime. The latter can be defined by

4
√
Nqsκ > Γ , (72)

when the identical coupling of Nqs equivalent two-level systems to a harmonic oscillator leads to
dressed states and an observable Rabi splitting occurs [79, 313, 319] (see also App. B.5). This
condition implies that a mutual exchange of energy between the QSs and NA emerges.

To find NAs that are suitable to reach strong coupling we investigate coupling constants and
loss rates depending on the shape and sizes of different NAs. One of our main results is that
the strong coupling regime requires rather small NA dimensions. This can be anticipated since
κ ∼ 1/

√
Vn [cf. Eqs. (23) and (47)]. Specifically, we find that NA elements have to be in the order

of a few tens of nanometers and their mutual separation must be a few nanometers only.
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Figure 15: NA designs to reach the strong coupling regime. (a) Investigated NAs consisting of
three identical silver spheroids with aspect ratio a/b with a mutual distance r0. QS placement and
polarization denoted by the red arrows. (b) Absolute value of Ex (r, ωna)normalized by the value
to the illuminating field for a NA with a = 13.3 nm, b = 8nm and by r0 = 2 nm. (c) κ/Γ for
dge = 6× 10−29 Cm and NAs with different geometries for single- (left) and three-spheroid (right)
NAs: dependence on spheroid size (red circles), a change of the minor axis b (red crosses), and
distance r0 (blue squares) as given in the legend. (d) NA efficiency η and (e) Purcell factor F .

Preliminaries: Figures of Merit, Numerical Setup and Considered Geometries

The NAs are analyzed with respect to their Purcell factor F and efficiency η [Eqs. (36) and (6)].
Such an analysis is strictly valid only in the weak coupling regime since these figures are calculated
via classical electrodynamic calculations. In the strong coupling regime, however, the effective loss
rate of the QSs is essentially given by the NA’s dissipation rate [198]. The classical character of F
and η have to be kept in mind when discussing the properties of the NAs in the strong coupling
regime.

The electromagnetic simulations were performed with COMSOL [170]. The dispersive permit-
tivity of the NA elements was taken from Ref. [125]. To determine the resonance frequencies ωna of
the investigated NAs, their extinction cross-section under monochromatic plane-wave illumination
have been calculated in a certain spectral range. The use of a plane wave ensures that only the
dipolar mode of the NA is excited that is used within the single-mode approximation. An embed-
ding with permittivity εd = 2.2 is further assumed. Then, following Sec. 3.4, the loss rate Γ of
each NA and coupling constant κ at the positions of the QS were determined assuming a realistic
dipole moment of |dqs| = 6× 10−29 Cm [302].

Two basic NA geometries are considered: A single or three identical silver spheroids with axis
lengths a and b. If a > b holds, the spheroids are prolate [Fig. 15(a)]. The distance between
neighbouring spheroids along the x axis is given by r0. Single- and multiple-spheroidal NAs are
interesting from different perspectives: For single spheroids, there is no gap required and they
might be easier to fabricate and investigate in experiments [320]. It has further been predicted
that single-particle structures might be suitable to reach the strong coupling regime [79, 321]. On
the other hand, NAs made of multiple elements potentially confine and enhance fields much stronger
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inside their feed gaps when compared to isolated nanospheroids. This confinement generally leads
to an increase of the Purcell factor and the mutual coupling. Furthermore, as we will see, such NAs
are larger and generally exhibit higher efficiencies, which makes them appealing for applications
[81,322].

The Final Design

An example of the field enhancement around a specific NA consisting of three spheroids with the
parameters a = 13.3 nm, b = 8 nm, and r0 = 2 nm is provided in Fig. 15 (b). The absolute
value of the scattered electric field normalized to the illuminating field in x-direction is shown at
the resonance frequency of the NA, ωdr ≈ 2π · 535THz (λdr ≈ 560nm). The illuminating field
propagates along the y-axis, i.e. perpendicular to the rotational symmetry axis of the NA, and
is polarized along the x-axis. This NA corresponds to a design with the largest calculated κ/Γ

ratio, which is termed “final design” for this reason (κ ≈ 116THz, Γ ≈ 183THz, κ/Γ ≈ 0.63 and
η ≈ 3.1%). The absolute value of the scattered field is about two orders of magnitude larger than
the illumination field. This justifies to neglect the direct interaction of the illumination field with
the QS [Eq. (70)].

Achievable κ/Γ-Ratios

According to Eq. (72), the κ/Γ-ratio is the most important figure to decide if the strong coupling
regime has been reached. This ratio is shown in Fig. 15 (c) for NAs with rescaled spheroids (red
circles) and those for which the minor axis is changed, i.e. different aspect ratios (red crosses).
The strong coupling regime is denoted by two dashed lines at κ/Γ = 1/4 for Nqs = 1 and at
κ/Γ = 1/

√
32 for Nqs = 2. As expected, the overall size of the NA is the most important quantity.

For rescaled spheroids and rescaled minor axis κ/Γ decreases considerably for larger NAs.
For the single-spheroid case the dependency is almost equivalent for both scalings. The strong

coupling regime is realized for a minor axis b below 20 nm for single-spheroid designs. For three
spheroids, strong coupling can be observed for b < 35nm and fixed a/b-ratio. For fixed major
axis a, the dependency on the minor axis’ scaling is less pronounced. Please note that the κ/Γ
ratio in the case of a single spheroid with small minor axes is larger than for three spheroids.
The reason is that κ and Γ are decreased for the single spheroid, but the drop in κ is slighly
less pronounced. For example, the parameters of the single spheroid final design are given by
κ ≈ 61.8THz, Γ ≈ 90.5THz, κ/Γ ≈ 0.68 and η ≈ 3.0% at λdr = 476nm.

In the same figure, the dependency of κ/Γ on the separation distance r0 between neighbouring
spheroids with a fixed geometry is displayed (blue squares). For r0 = 2nm, the NA design corre-
sponds to the aforementioned final design [Fig. 15 (b)]. Because of the symmetric placement of
the QSs inside of the feed gap an increase in r0 implies an increase in the distance between QSs
and NA surface. For increasing r0 the field is less localized inside the gap, which explains why the
coupling constant κ decreases. In the case of three spheroids, strong coupling can be achieved until
about r0 = 5nm. Interestingly, in the single-spheroid case, this critical distance can be in the order
of r0 = 7nm. This difference is quite important for an experimental realization. Since the smallest
QDs are in the order of 4nm [299], the three-spheroid NAs might be best suited for atomic QSs
with characteristic sizes around a0, whereas strong coupling might be achieved for single spheroids
with the help of QDs.

Trade-off between Efficiency and Coupling Strength

The results for κ/Γ are quite promising, since the strong coupling regime can be reached for
different kinds of investigated NAs. However, following the definition of a NA (page 2), an “efficient
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conversion of free-propagating radiation to localized energy” is required. In addition, we expect
to find a fundamental trade-off between coupling strength and efficiency again (Fig. 13). We may
pose the question if the strong coupling regime can be achieved with a somehow large efficiency.

In a comparison of both sub-figures of Fig. 15 (d), it can be seen that three-spheroid NAs
generally exhibit larger efficiencies. This can be explained by their larger overall sizes. Furthermore,
in the case of varied r0, the η are well below 5% for all investigated cases. The reason is that the
overall size of the NA is only marginally changed by a change of r0. The radiation charactistics
are consequently almost unchanged. A clear distinction between single- and three-spheroid NAs
can be observed for changed minor axis b. Whereas in the latter case η rises with increased b,
the efficiency drops for the single prolate spheroid NAs. This behavior might be explained by
an increased coupling to dark modes of the single spheroids, which are included in the classical
calculation of η.

The highest efficiencies can be observed for rescaled spheroids with constant ratio a/b. In this
case the major axis is also increased with b such that the overall size of the NA is considerably
changed. For example, a three-spheroid NA with b ≈ 28nm has an efficiency of η ≈ 61% and
enables strong coupling even for a single QS. This NA exhibits a total length of L = 3a + 2r0 ≈
146nm, which is in the order of efficient NA sizes at the NAs resonance wavelength λ = 504 nm
(Sec. 2.2). The efficiency of the largest single-spheroid NA that enables strong coupling only for
Nqs = 2 (b ≈ 22nm) is considerably lower (η ≈ 45%).

In Fig. 15 (e), the classically calculated Purcell factors F for the investigated NA designs
are shown. Because of the lower efficiencies, the single-spheroid NAs generally exhibit strongly
decreased F compared to their three-element counterparts. Furthermore, F drops for the single-
spheroid NAs for all geometrical variations albeit a local maximum for the rescaled spheroids. For
these NAs, the increase in the mode volume is the most important factor.

For the three-spheroid NAs, however, the results are more diverse. For the scaling of r0, F
drops orders of magnitudes with an increase in the gap sizes. For those NAs, η is almost constant
and the drop in F is caused by a weaker localization of the electric field inside larger gaps. For
changed minor axis, the Purcell factor remains almost constant. In this case, a decrease in the
coupling constants is countered by a slight increase in the efficiency. On the other hand, NAs with
rescaled spheroids show a strong increase in F up to b ≈ 20nm and the Purcell factor increases until
b ≈ 30nm, after which a slight decrease can be observed. This behaviour is readily explained by the
fundamental trade-off between coupling strength and efficiency, in agreement to our observations
in Fig. 13 (c) for conformally rescaled NAs.

Summary

In summary, a variety of different NA designs can be used to reach the strong coupling regime.
Three-spheroid structures exhibit a better field localization in their feed gaps and thus have gen-
erally larger coupling constants. Because of the increased mode localization, the strong coupling
regime can be reached for considerably larger NAs and their efficiency is much better than their
one-spheroid counterparts. Geometries with rescaled spheroids turn out to be superior to the other
investigated geometrical variations because of the much larger efficiencies associated with larger
NA elements. Because of the fundamental trade-off between coupling strengths and efficiency due
to their opposite size dependencies, the strongest κ/Γ ratios around 0.6 . . . 0.7 can be achieved for
NAs with rather poor efficiency η � 10%.

However, as indicated in Fig. 13 (d), more efficient NAs with η ≈ 50% seem feasible for lower
κ/Γ = 0.2 . . . 0.3, which is still in the strong coupling regime for Nqs = 2. Furthermore, rather
small separations are needed, which might require the use of atomic QSs in experiments. Note
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Figure 16: Probabilities of different QS and NA states (upper part) and the number of excitations〈
a†a

〉
(lower part) in the normalized timescale κt. Strong coupling between NA and QSs causes

a mutual exchange of excitations between NA (dashed lines) and QSs (solid lines). The dynamics
strongly depend on the Rabi frequency Ω.

that the NA-QS separation r0/2 is still larger than characteristic electron tunneling distances of a
few Å [72]. But corresponding interactions might already constitute a significant contribution as
we have discussed already (Sec. 2.1).

6.3 Effects of Strong Coupling

The effects which are caused by the strong coupling of NAs to QSs shall be investigated now. First,
we investigate how the quantum dynamics change. Afterwards, we discuss the extinction spectra
of such hybrid systems which are accessible in experimental setups. All outlined calculations are
performed using a freely available quantum optics framework [232] for which the NA’s Hilbert
space is truncated but much larger than its number of excitations

〈
a†a

〉
.

6.3.1 Quantum Dynamics

An example for the quantum dynamics of a hybrid system is given in Fig. 16. The hybrid system is
assumed to be at resonance, i.e. with ωna = ωqs. Its physical parameters are given by κ = 0.034ωqs

and κ/Γ ≈ 0.752, which is comparable to the final design in Sec. 6.2. The hybrid system is initially
in its ground state and subject to an illumination with varying Rabi frequencies Ω = 0.4Γ . . . 3.2Γ.

Weak Illumination The excitation of the NA by the external illumination quickly leads to a
fast increase of the probability of a single photon excitation of the NA for all cases of Ω (dashed
blue lines). In the limit of a weak driving field with Ω = 0.4Γ [Fig. 16 (a), top], the excitation of
the NA is transferred to an excitation of the QS’s symmetric state |S〉 = (|1, 0〉+ |0, 1〉) /√2 (red
line). But the probability of the QS’s state with two excitations, |D〉 = |1, 1〉, does not vanish (solid
cyan line), too. For this illumination strength, higher-order excitations of the NA are negligible as
it can be seen for the two-photon NA state probability (dashed green line).

The relaxation to a steady state takes several κt, while a continuous energy exchange between
the QS’s symmetric state and the NA takes place. In the steady state, dissipative and radiative
losses of the NA level the energy supply by the external drive. The significant probability of
a symmetric state occupation albeit a very low NA excitation [Fig. 16 (a), bottom] is a truly
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nonclassical phenomenon and shows the potential of the hybrid system to generate entangled
states [91,323,324].

Strong Illumination For the strongest investigated illumination [Ω = 3.2Γ, Fig. 16 (d)], the
dynamics are completely altered compared to weak illuminations. Here, the QSs exhibit a high
probability to be in the doubly excited state |D〉 and the symmetric state is negligible. Furthermore,
the NA stores most of the energy, since its mean number of photons

〈
a†a
〉
≈ 13 for t → ∞. The

change of the quantum dynamics from weak to strong pumping rates [Fig. 16 (a) to (d)] indicates
the huge importance of the driving field strength.

Whereas in the weak illumination case the energy of the hybrid system is mainly stored in the
symmetric state of the QSs, the NA becomes the main energy reservoir for stronger illuminations.
In this case we expect a transition to a classical behavior of the hybrid system. Possible applications
are much different than in the case of a weak illumination for which the evolution of the system
shows a strongly nonclassical behaviour. This observation underlines the interesting possibilities
of single-photon spectroscopy of hybrid systems and the need to understand single-photon sources
(Sec. 5).

6.3.2 Spectra Modifications

Before we analyze the modification of extinction spectra of certain NAs, it is worthwile to reconsider
the experimental feasibility of such devices. It was demonstrated that the strong coupling regime
may be achieved for single- and three-spheroid NAs. Three-spheroid NAs may be generally superior
because of their larger coupling strengths and higher efficiencies. Nevertheless, single-spheroid NAs
might be much easier to fabricate, mainly because they do not require extremely precise feed gaps.
For an experimental realization, an extremely accurate fabrication of the NA and a likewise precise
placement of the QSs seems necessary. Fortunately, recent advances in nanotechnology meet both
requirements [55,309,325–328].

As we have discussed already, the dissipative and radiative losses of the NA are the dominating
loss channels of the hybrid system. Furthermore, since most NAs considered in Sec. 6.2 exhibit
low efficiencies, the extinct power is approximately given by the absorbed power

Pnr (ωdr) = ~ωna〈a†a〉Γnr . (73)

In the last paragraph the rich dynamics of the hybrid system was discussed. In this paragraph Pnr

shall be investigated in the steady-state.

From Weak to Strong Coupling The extinction spectra due to the strong coupling of a NA
to two QSs are modified when compared to that of the bare NA. These modifications are mostly
pronounced if the mean number of excitations of the hybrid systems is low, i.e. at the single-
quantum level. The main influence on the extinction spectrum is due to the coupling strength κ
between the subsystems. To outline this effect, we calculate 〈a†a〉 ∝ Pnr for a hybrid system with
characteristic values for the NAs discussed in Sec. 6.2 but for ωqs 6= ωna, i.e. a detuned QS [Fig. 17
(a)]. With respect to a variation of κ, the parameters are Γ = 0.025ωna and ωqs = ωna − 1.2Γ,
which is a small detuning. Furthermore, the Rabi frequency is constant at Ω = 0.6Γ.

In the weak coupling limit (κ = 0 and κ = 0.1Γ), the broad resonance of the NA dominates the
extinction spectrum and the modification of the spectrum is barely visible. In the case of strong
coupling (κ = 0.4 and κ = 0.8Γ), the spectrum is strongly modified. The QS’s resonance position
gets shifted to lower frequencies, whereas the peak attributed to the NA can be found for higher
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Figure 17: Mean number of excitations proportional to the extinction spectra for different hybrid
systems [(a) and (c)] and their analytical eigenenergies in the lossless case (b). (a) Influence of the
coupling strength κ for detuned systems (ωna = ωqs + 1.2Γ). Steady-state mean NA excitations
of the NA vs. normalized illumination frequency (Δωna = ωna − ωdr) for a weak illumination. (b)
Eigenenergies of the hybrid system as function of the detuning ωna−ωqs for Ntls = 1 (dashed lines)
and Ntls = 2 (solid lines) for a total number of n ≤ 2 excitations. (c) Influence of the illumination
strength for a hybrid system on resonance (ωna = ωqs). Mean number of NA excitations normalized
by the dimensionless parameter 4Ω2/Γ2.

frequencies. The shift of the NA peak is in the order of the resonance width. Furthermore, the
strengths of the resonances are strongly affected.

The additional deviations of the spectrum from a simple superposition of two Lorentzians
indicates the importance of higher photon-number states in the response of the hybrid system.
Their energies can be understood in terms of a hybridization of all involved sub-systems [39,198].
They can be derived with the help of a lossless Jaynes-Cummings model (App. B.11). Without
detuning (ωna = ωqs), the energy splitting for the single-excitation states amounts to

√
Nqsκ, but

becomes more involved for ωna �= ωqs [Fig. 17 (b)]. In particular for Nqs = 2 a third mode appears
at an energy 2�ωqs for ωna = ωqs. As we will see shortly, this mode has a strong impact on the
hybrid system’s spectrum at ωdr .

Varied Illumination Intensities On the single-photon level, the influence of strong coupling
is quite significant, also for detuned hybrid systems. In Fig. 17 (b) we see how the eigenenergies
behave for n = {1, 2} excitations. However, for stronger illumination intensities, much more energy
levels contribute to the interaction and we expect that the classical behavior of the NA is restored.
In this case, the QSs play only a minor role in the spectrum. To check this claim, we calculate the
spectrum of the NA investigated in Sec 6.3.1 (κ = 0.034ωqs, κ/Γ ≈ 0.752) at resonance with the
QSs.

The steady-state mean photon number has been rescaled by the dimensionless parameter
4Ω2/Γ2, which is approximately the steady-state solution for the bare NA on resonance. We
find that in the weak excitation limit (Ω = 0.2Γ, purple solid line) the absorption peaks appear
at Δωna = ±√

2κ, as predicted by the eigenenergies for a single excitation. Furthermore, a local
maximum around Δωna = 0 can be observerd which corresponds to the aforementioned excitation
of the state with eigenenergy 2�ωqs. This peak does not appear for a single QS for which the onset
of transparency has been reported [329,330].

For stronger illumination intensities (Ω = 0.4 . . . 0.8Γ) the spectrum changes drastically. More
eigenstates of the hybrid system are involved in the interaction and the extinction peaks are shifted
towards the resonance of the bare NA. For strong driving fields the spectrum converges to that
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of the bare NA, although the influence of the QSs is still observable for Ω = 1.6Γ. In this case
we find that the extinction is still lower at resonance when compared to the bare NA, but also
broader. Furthermore, it exhibits oscillatory features that indicate the excitation of many states
of the hybrid system again.

We may state that in the strong coupling regime the extinction spectra of the hybrid system are
strongly modified. The modification is mostly pronounced for illuminations on the single-photon
level.

Concluding Remarks

Based on the QNM quantization scheme, the coupling of one and two QSs to different silver
NAs designed to reach the strong coupling regime was investigated. The strongest coupling could
be reached for NAs with small spheroidal elements and likewise small feed gaps. Because of
the fundamental trade-off between coupling strength and efficiency, a very strong coupling with
κ/Γ > 0.6 can be reached for NAs with very low efficiency only.

But NAs with κ/Γ ratios around 0.2 . . . 0.3 can be comparably efficient if they are made of
three spheroids. To reach strong coupling, the distance of the QSs to the NAs has to be in the
order of just a few nanometers, which might render the use of atomic QSs necessary. Furthermore,
an introduction of other interaction channels at such low distances might become inevitable for a
correct theoretical description.

Reaching the strong coupling regime has a strong impact on the dynamics of the hybrid system.
An ongoing energy exchange between NA and QSs leads to dynamics drastically different than the
characteristic exponential decay in the weak coupling regime. These dynamics give rise to quantum
properties of the hybrid system that might be used to generate nonclassical light as discussed in
Sec. 5.

The coupling of the subsystems furthermore leads to a strong modification of experimentally
accessible quantities such as the extinction spectra. However, to verify strong coupling, spectral
measurements on the single-photon level, i.e. small Ω/Γ-ratios have to be realized. Then, a true
quantum regime is reached and Rabi splittings can be observed.
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7 Conclusions and Outlook

Plasmonics has raised considerable interest during the past several years [331]. Because of ongoing
improvements in fabrication techniques, new possibilities arised in the field that made Feynman’s
dream come true to arrange atoms on the nanoscale [332]. And as Feynman has foreseen [4],
these new possibilities open spectacular opportunities to control light-matter-interactions on the
nanoscale. But to apply these opportunities, a description of such devices within the realms of
quantum mechanics is required. Then plasmonics evolves into quantum plasmonics. The results
of this thesis were aimed at contributing to this newly arising field.

In Sec. 2 and Sec. 3 we have provided a theoretical framework to describe the interaction of
NAs with QSs. The applicability of the outlined approximations is extremely versatile and can be
used for completely different physical regimes. A classical electrodynamics description of NAs gives
the possibility to freely design and tune them for specific means, but it leads to a semiclassical
description of the hybrid system. On the other hand, a quantization scheme for NAs based on
QNMs has been developed. A fully quantum treatment of the hybrid system is then realized.

The novelty of our treatment lies in the explicit determination of the quantized electric and
magnetic fields of the NA. These fields can be used for different kinds of interactions beyond the
electric dipole approximation. Within the QNM quantization, we are restricted to NAs that can
effectively be described as lossy harmonic oscillators. Hence we exchange a freedom in the design
of NAs for a better understanding of the truly quantum interaction between NAs and QSs based
on just a few parameters. The appeal of the QNM quantization lies in a low-dimensional Hilbert
space and an easy determination of the aforementioned parameters using state-of-the-art numerical
tools.

In Sec. 4 we used the semiclassical description to show how the internal dynamics of a three-level
system is influenced by the presence of a suitably designed NA undergoing a quadrupolar excitation.
Two important aspects of NA-QS-interaction have been demonstrated: First, NAs allow to access
transitions of QSs that are barely accessible by other excitation techniques. Second, the internal
dynamics have a huge influence on the resulting emission enhancement when compared to free
space. Although a relatively restrictive rate equation approximation was used, we encountered
rich physics. A general scheme to treat multipolar couplings based on a local expansion of the
fields was also outlined. It provides a clear distinction between electric and magnetic effects. In
Ref. [78] we questioned not only the electric dipole approximation, but also the influence of a QS’s
dynamics on experimental measurables. These considerations may have influenced the way how
light-matter interactions on the nanoscale are investigated.

Our studies are based on the idea to show the occuring effects with the simplest possible setup.
Hence the simplest possible theoretical description and rather simplistic NA designs are used. The
effects of truly quantum interactions between NA and QS require the use of a NA quantization
scheme. This is especially true if the statistics of the light emitted by the hybrid system needs to
be investigated. In Sec. 5 (inspired by Ref. [89]), we have discussed the potential of NAs as ultra-
bright single-photon sources, an indispensable prerequisite for practical quantum communication
schemes. We have shed some new light on the accepted assumption that the Purcell factor is
basically the only figure of merit for such light sources. The pumping scheme and an associated
pumping rate have to be accounted for. Furthermore, the actual nonclassicality of the emitted light
has to be verified. Based on analytical and numerical investigations, several trade-offs between NA
efficiency, Purcell factor, and nonclassicality of the emitted light could be identified. In general
it seems necessary to account for the actual quantum nature of the interactions between QSs and
NAs.

In the case of a strong coupling between different QSs and NAs it is clear that the hybrid
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system’s dynamics can only be described consistently within a fully quantum description. In Sec.
6 we have discussed the possibility to reach the strong coupling regime using the interaction of
QSs and suitably designed NAs based on Ref. [80]. This goal might be achieved in principle. But
the fundamental trade-off between efficiency and coupling strength may set ultimate limits for
practical implementations. Furthermore, the necessary small dimensions of the involved NAs and
the precise placement of the QSs are quite challenging. But if the strong coupling regime can
be reached, the benefits may outweight the efforts dramatically: Promising applications such as
ultra-fast signal processing at the nanoscale and at the single-photon level would come into reach.

Overall it was shown how different descriptions of NA-QS interactions can be used to unravel
prospects in fundamental research and applications. Semiclassical approaches allow in-depth in-
vestigations for sophisticated NA designs, whereas the focus of the QNM quantization scheme
lies on the fully quantum description of the hybrid system. This description permits an access
of quantum observables within relatively simple calculations. For both approaches there exist a
plethora of possibilities for future investigations and applications that we shall briefly discuss in
the following.

Outlook: Semiclassical Interactions

The interaction between QS and NA can be treated semiclassically if the correspondence princi-
ple for the electromagnetic field holds and the coupling between both subsystems is sufficiently
weak. Such conditions are experimentally much easier to realize than scenarios where the true
quantum nature of the interaction must be taken into account. So it seems logical to discuss future
prospects for the semiclassical interactions mainly in the context of practical applications in the
following. Afterwarts, the perspectives of the QNM quantization approach for academic studies
are considered.

There may be further applications of forbidden transitions than those mentioned in Sec. 4.4.2.
The deterministic access to such transitions might be used to effectively acquire so-called Λ- and
V -configurations by a suitable coupling of NAs and QSs. Λ-configurations can be used to determin-
istically enable/disable a certain transition by the help of a control beam in another transition [185].
Such an effect might be adapted for new kinds of transistors [333] and electromagnetically induced
transparency devices [334]. In a V -configuration, a QS is driven by two competing pumps at
different frequencies for two different transitions. Usually, one of the transitions is long-living in
free-space, e.g. because it is dipole-forbidden. Depending on the environment, the probability of
the V -type QS to emit one or the other frequency can drastically change [335]. This dependency
might be employed in spectroscopic schemes to measure occurence and position of certain QSs.
All of these approaches can be described within the semiclassical multilevel Bloch equations that
can also be used to evaluate much more complicated QSs [185].

But the biggest advantage of the semiclassical approach is the absolute freedom in NA design.
This freedom permits a true NA engineering for a specific purpose in conjunction with a suitable
QS (see i.e. Ref. [98] for some NA design examples). Prominent examples of NA engineering are
the combination of QSs with directional NAs [49,103] that might for example be used for directional
single-photon emission, NA-enhanced efficiency enhancements for upconversion processes in solar
cells [336], and for nonlinear NA elements to change NA properties on demand [337, 338]. But
all these design-related questions have to address the limitations of reproducible and cost-efficient
NA fabrication and QS placement schemes to find their way into practical applications. A very
promising attempt has been made with large-scale ring NA fabrication techniques and a new QD
placement technique [57, 59, 309]. Since both fabrication methods are based on electron-beam
lithography, a combination of them seems very likely to realize large-scale reproducible, versatile
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and cost-efficient arrays of hybrid systems in the near future.

Once, the practical applicability of NA-based hybrid systems is proven, a further development
might take place. We believe that it is unlikely that this trend will result in a stronger utilization of
plasmonic particles, i.e. to combine NA-QS hybrid systems to functionalized metamaterials [339]:
The main advantage of NAs is their efficient energy localization to tiny volumes. Hence, an
unwritten paradigm is to use just as much metal as needed to reduce losses. Enhancing the metal
filling fraction seems to be an ill-conditioned way for sophisticated light-matter-interactions unless
losses may be used to provide some additional value like for absorbers [340].

A combination of NAs with photonic crystals without additional Ohmic losses seems promising:
No further dissipation is introduced but one gains a large tunability of the coupling of NA-QS
hybrid systems to the modes of the photonic crystal [341]. These modes may then be used to
enable interactions between hybrid systems over long distances in conjunction with optical fibre
technology for telecommunication applications. A photonic crystal may also be used to couple
hybrid systems along relatively short distances e.g. for NA-enabled quantum computers. The
combination of NA and photonic crystal technology will open entirely new possibilities that are
not available with one of these technologies alone.

These ideas were just a few to illustrate how semiclassical approaches may lead to amazing
applications which are mainly based on advancements in fabrication technology. On the other hand,
QS-NA-interactions will continue to contribute significantly to our fundamental understanding of
light-matter-interactions on the nanoscale. A lot of interesting physics is expected to occur when a
quantum description of the NA is necessary. In the following we shall discuss how the introduced
QNM quantization might yield new perspectives.

Fully Quantum Interactions

The introduced QNM quantization scheme is a powerful tool to understand the quantum nature
of QS-NA-interactions. As discussed already, a lot of interesting physical systems can be studied
in this approach.

The physical model in terms of harmonic oscillators coupled to QSs is rather simplistic. Thus,
an overwhelming number of questions that arose in the context of quantum optics and cavity
quantum electrodynamics can be applied to NA systems. Hence we may simply refer to some
standard references of these topics to give an impression of possible future directions in research
and application [185,195,198,342–344].

Noteworthy, the QNM quantization of NAs can be applied to a large class of plasmonic struc-
tures. It can consequently also be used to double-check and extend classically derived results. One
interesting verification would be the emission of coherent light with coherence lengths of many
wavelengths by heated structured media [345].

Furthermore, generalizations of the QNM quantization seem to be straight forward. One option
is the construction of effective Hamiltonians for hybrid systems based on an at least partially non-
Lorentzian mode expansion of the density of states J (ω). In this way, the interaction can again be
described by a low-dimensional Hilbert space. For example, coupled harmonic oscillators can be
used to mimic a Fano-type J (ω) [346]. Such resonances will open new pathways to study strong
coupling phenomena for extended structures. Such investigations may benefit from a large number
N of involved QSs for which we know that an effective coupling strength scales as κN ∝

√
Nκ1 [314].

The incorporation of quantum size effects [66] and of nonlocal responses of the NA material
[65,69,70] seems to be easily achievable. But considerations of electron-spill-out [64,71,347] would
at least require a new coupling term in the Hamiltonian to account for this additional interaction
channel. A combination of the aforementioned generalizations might be a prime candidate to grasp
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the physics of truly near-field interaction within a relatively simple framework.
Another way to extend the quantization scheme is the use of intrinsic nonlinear materials for

which a canonical quantization is known [348]. A nonlinear QNM quantization might be very
suited to contribute to ongoing questions about nonlinear responses of metallic NAs [118].

In conclusion we may state that the current form of the QNM quantization scheme is a pow-
erful tool that allowed to investigate NA-QS-interactions on an entirely new level compared to
semiclassical calculations. The scheme is simple yet extremely versatile in an effective description
of different effects such that generalizations are easily possible.
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Appendices

A Classical Considerations

A.1 Poynting’s Theorem

Starting from Maxwell’s equations in Fourier space it is possible to determine Poynting’s theorem
for dispersive media for fields which slowly vary around a frequency ω0 [115,349]. In this approach,
the electric field is written as

E (r, t) =
1

2

[
Eenv (r, t) e−iω0t + E?env (r, t) eiω0t

]
, (74)

where Eenv (r, t) is the slowly varying envelope whose Fourier transform is limited to a small
spectrum ∆ω � ω0 around ω = 0, Eenv (r, t) =

´
∆ω

Eenv (r, ω) exp [−iωt] dω. Equation (74) shall
hold likewise for other electromagnetic fields. Then, Poynting’s theorem can be derived by a Taylor
expansion of Ḋ (r, t) using Eq. (1). The time-averaged energy density reads

〈w (r, t)〉 =
1

2
ε0∂ω0 [ω0ε

′ (r, ω0)]
〈
E2 (r, t)

〉
+

1

2µ0

〈
B2 (r, t)

〉
(75)

in which the notation ε (r, ω) = ε′ (r, ω) + iε′′ (r, ω) is employed. 〈. . . 〉 denotes a time average in
which fastly varying terms ∝ exp [±2iω0t] are neglected. Throughout this thesis, no dispersion in
the magnetic permeability is assumed, although a generalization is straightforward.

Poynting’s theorem in the time domain then reads as

∂t 〈w (r, t)〉 = −∇ · 〈S (r, t)〉 − ε0ω0ε
′′ (r, ω0)

〈
E2 (r, t)

〉
, (76)

with the Poynting vector S (r, t) = E (r, t) × H (r, t). This relation is derived using the slowly
varying envelope approach. Please note that

〈
E2 (r, t)

〉
=

1

4

〈[
Eenv (r, t) e−iω0t + c.c.

]2〉
=

1

2
|Eenv (r, t)|2

has been used. We can also see that the factor 1/2 in Eq. (74) causes some prefactors if one
compares time and frequency space representations. For example, the time-averaged Poynting
vector simplifies to 〈S (r, t)〉 ≈ < [Eenv (r, t)×B?

env (r, t)] /2µ0 assuming ∆ω � ω0 for an averaging
process during the time Tav for which ω0 � Tav/2π � ∆ω holds.

A.2 Analytical Reflection Coefficients at Nanoantenna Terminations

A lot of the physics of NAs can be understood with the help of simple Fabry-Perot models (Sec.
2.3). At the core of this model is a determination of the reflection coefficient at the termination
of the NA, which is the main subject of this section. We have used this approach to find the
scaling behaviour of so-called circular NAs made of a stack of different materials [159]. A further
investigation of the scaling of slab system is well documented in Ref. [167]. All of these findings
are conceptionally based on a generalization of an earlier work of Gordon [156].

The general approach to calculate reflection coefficients of a certain mode at a termination of
a NA can be summarized as follows:

1. Determine the electric and magnetic fields of the plasmonic mode under investigation. Ex-
press the free-space modes at the termination of the NA as a superposition of modes that
offer orthogonality relations to the plasmonic mode.
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2. Decompose the fields into “incoming” and “reflected” components. Rewrite the electric and
magnetic field with respect to their incoming parts only. This step naturally introduces the
reflection coefficient r.

3. Calculate the components of the modes in free space with respect to the unknown r via a
suitable integration of the electric field tangential to the NA termination.

4. Integrate the product of continuous tangential components of the electric and magnetic fields
to determine the reflection coefficient up to a one-dimensional integration.

To illustrate this scheme, we shall derive the reflection coefficient for two different classes of NAs.
First, we calculate the reflection coefficient for Hankel-type SPPs of circular NAs (Ref. [159]).
Afterwards, the reflection of a plasmonic m = 0 mode of a wire NA is derived. The result is
the same as provided by Gordon [157] who, however, did not provide an explicit derivation. The
limitations of the method will be outlined as well.

A.2.1 Circular Nanoantennas

In this section, the complex reflection coefficient for Hankel-type SPPs of circular NAs is derived.
For a definition of the geometry see again Fig. 6 (a).

First, we examine radially propagating plasmonic modes supported by the NA and a suitable
ansatz for the free-space fields. Afterwards, the Fourier components of the radiating field are
calculated. Finally, the continuity of Hm

ϕ is used to calculate the reflection coefficient integrating
Emz ·Hm

ϕ at ρ = R. The derivation corresponds to App. A in Ref. [159] with minor modifications
only.

Plasmonic Modes and Outer Fields The studied NAs exhibit a piecewise translational sym-
metry in z-direction. Thus, the structure consists of several discs which may be denoted by the
subscript i in the following. We assume that the NA supports plasmonic surface modes propagating
in radial direction. Hence, at least one of the materials needs to be metallic.

In each layer, one may split the fields into tangential (Ei,t, Hi,t) and normal components
(Ei,z, Hi,z) relative to the interface of the discs. Then, the entire dynamic can be calculated using
only the normal components. The tangential fields in the i-th layer are given by [154]

Ei,t =
i

k2
ρ

[ki,z∇tEi,z − ωµ0µiez ×∇tHi,z] and

Hi,t =
i

k2
ρ

[ki,z∇tHi,z + ωε0εiez ×∇tEi,z] , (77)

where ki,z is the wave vector component in z-direction and ∇t is the transversal gradient, i.e.
∇t = ex∂x + ey∂y in Cartesian coordinates. In this formulation, all fields exhibit exp (iki,zz) and
exp (−iωt) dependencies [154]. The radial wave vector

k2
ρ =

ω2

c2
µiεi − k2

i,z

has to be independent of z since it is a conserved quantity in all layers. The various plasmonic
modes of the NA are thus characterized by different kρ and it is convenient to define

γi = iki,z and kSPP ≡ kρ .

In general, the NA may support several modes. Nevertheless, for the sake of simplicity a corre-
sponding index will be suppressed.
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Furthermore, we assume transverse-magnetic (TM) modes with Hz = 0 and the materials shall
be non-magnetic, i.e. µi = 1. Then

Hi,t =
i

k2
SPP

ωε0εiez ×∇tEi,z =
i

k2
SPP

ωε0εiez ×
[
∂ρEi,zeρ +

1

ρ
(∂ϕEi,z) eϕ

]
. (78)

The only nonvanishing normal field component Ez is described by the scalar two-dimensional
Helmholtz equation

∆tEz + k2
SPPEz = 0 .

Since kSPP is a constant throughout the layers, this differential equation generally applies to the
plasmonic modes supported by the NA. In rotational symmetry, the latter equation has solutions in
terms of Bessel and Neumann functions Jm (kSPPρ) and Nm (kSPPρ) modulus an angular variation
of exp (imϕ) which will be denoted by the index m in the following. For the calculation of the
complex reflection coefficient, however, we have to use Hankel functions which describe propagating
rather than standing wave fields. They read

H1/2
m (kSPPρ) ≡ Jm (kSPPρ)± iNm (kSPPρ)

and represent radially outgoing (1) and incoming (2) cylindrical waves in the given time-dependence.
Since the fields are given in terms of Ez, it is convenient to introduce the reflection coefficient rm
as

Em,−z (ρ, z) = Am (kSPPρ) · a (z) , with

Am (kSPPρ) = H1
m (kSPPρ) + rm ·H2

m (kSPPρ)

where the boundary conditions at the NA termination determine the “mode profile” a (z) in z-
direction as well as the propagation constant kSPP. Furthermore, the superscript “−” was used to
indicate fields for ρ ≤ R. Likewise, “+” will be used for the outer region.

From Eq. (78), the angular component of the magnetic field is given by

Hm,−
ϕ (ρ, z) = =

iωε0εi
ω2

c2 εi + γ2
i

∂ρE
m,−
z (ρ, z) =

iωε0

kSPP
Bm (kSPP ρ) ε (z) a (z) (79)

with

Bm (kSPP ρ) ≡ 1

kSPP
∂ρAm (kSPP ρ) = DH1

m (kSPP ρ) + rm ·DH2
m (kSPP ρ) ,

DH1/2
m (ξ) ≡ ∂xH

1/2
m (ξ) .

With the determination of Em,−z and Hm,−
ϕ , a reasonable ansatz for the fields outside the NA

with the same symmetry properties, i.e. the same angular modulus m, can be constructed. For
ρ ≥ R, both fields are a superposition of outgoing Hankel-type SPPs whose amplitudes are given
by certain Fourier coefficients cm (kz). For each of these waves, the wave vector in radial direction
is given by k+

ρ =
√
εdk2

0 − k2
z . Here, a relative permittivity εd is assumed in the outer region. With

this ansatz, the fields can be represented as

Em,+z (ρ, z) =

ˆ ∞
−∞

cm (kz)H
1
m

(√
εdk2

0 − k2
zρ

)
eikzzdkz ,

Hm,+
ϕ (ρ, z) = i

ˆ ∞
−∞

cm (kz)
ε0εdω√
εdk2

0 − k2
z

·DH1
m

(√
εdk2

0 − k2
zρ

)
eikzzdkz (80)
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where the magnetic field follows from Eq. (78).

Fourier Components of the Free-space Modes Now we use the continuity of the magnetic
field to determine the Fourier components cm (kz). Since Bm, by definition, explicitly depends on
rm, this will likewise hold for the cm (kz).

A Fourier transformation for ρ ≤ R yields

ˆ ∞
−∞

Hm,−
ϕ (ρ, z) e−ikzzdz =

iωε0

kSPP
Bm (kSPP ρ) ·B− (kz) with B± (kz) ≡

ˆ ∞
−∞

ε (z) a (z) e±ikzzdz .

The same operation for the outer region results in

ˆ ∞
−∞

Hm,+
ϕ (ρ, z) e−ikzzdz = i

ˆ ∞
−∞

cm (k)
ε0εdω√
εdk2

0 − k2
DH1

m

(√
εdk2

0 − k2ρ

)ˆ ∞
−∞

ei(k−kz)zdz

︸ ︷︷ ︸
2πδ(k−kz)

dk

= 2πi · cm (kz)
ε0εdω√
εdk2

0 − k2
z

·DH1
m

(√
εdk2

0 − k2
zρ

)
. (81)

Matching at ρ = R gives

iωε0

kSPP
Bm (kSPP ρ)B− (kz) = 2πi · cm (kz)

ε0εdω√
εdk2

0 − k2
z

·DH1
m

(√
εdk2

0 − k2
zR

)
.

Hence,

cm (kz) =
iωε0
kSPP

Bm (kSPPR) ·B− (kz)

2πi · ε0εdω√
εdk20−k2z

DH1
m

(√
εdk2

0 − k2
zR
) =

Bm (kSPPR)

2π · εd · kSPP
·
√
εdk2

0 − k2
zB
− (kz)

DH1
m

(√
εdk2

0 − k2
zR
) . (82)

Note that the Fourier components of the free-space modes are given as explicit result and no further
integration is needed. The reason is that we used the same modal expansion in z-direction, i.e. in
terms of plane waves that allowed the simplification

´∞
−∞ ei(k−kz)zdz = 2πδ (k − kz) in Eq. (81).

This simplification is at the core of the derivation of the reflection coefficient. We will find a similar
expression in App. A.2.2 and deduce limitations of the general method at that point.

Integration over Emz ·Hm
ϕ The final step to calculate the reflection coefficient is the integration

of the inner and outer Emz using Hm,−
ϕ at ρ = R. Since Bm (kSPPR) is a constant, it is sufficient

to use the field profile ε (z) · a (z).

First, we find

ˆ ∞
−∞

Em,−z (R, z) ε (z) a (z) dz = Am (kSPPR) · σ with σ =

ˆ ∞
−∞

a (z)
2 · ε (z) dz .

Performing the same integration over the mode field for ρ ≥ R gives

ˆ ∞
−∞

Em,+z (R, z) ε (z) a (z) dz =

ˆ ∞
−∞

cm (kz)H
1
m

(√
εdk2

0 − k2
zR

)
·
(ˆ ∞
−∞

eikzzε (z) a (z) dz

)
dkz

=

ˆ ∞
−∞

cm (kz)H
1
m

(√
εdk2

0 − k2
zR

)
·B+ (kz) dkz .

We can now equate the last two results to obtain

Am (kSPPR) · σ =

ˆ ∞
−∞

cm (kz)H
1
m

(√
εdk2

0 − k2
zR

)
·B+ (kz) dkz .
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With the known cm (kz) [Eq. (82)], we conclude that

Am (kSPPR) · σ =
Bm (kSPPR)

2π · εd · kSPP
· Im with (83)

Im =

ˆ ∞
−∞

H1
m

(√
εdk2

0 − k2
zR
)

DH1
m

(√
εdk2

0 − k2
zR
) ·
√
εdk2

0 − k2
zB
− (kz) ·B+ (kz) dkz .

Using Am and Bm, the reflection coefficient [cf. Eq. (12)] can be calculated as

rm =
2π · εd · kSPPσ ·H1

m (kSPPR)−DH1
m (kSPPR) · Im

−2π · εd · kSPPσ ·H2
m (kSPPR) +DH2

m (kSPPR) · Im
.

Note that the result is independent of the amplitude of the mode: A linear rescaling a (z)→ αa (z)

does not affect the reflection coefficient.

Reflection Coefficient for a semi-infinite Cylinder Equation (12) constitutes a rather gen-
eral result that allows the investigation of the scaling of a large class of circular NAs (Sec. 2.3).
Nevertheless it is often possible to find simpler solutions for special geometries. In these cases, the
reflection coefficient can be given in a rather simple form and may be compared to known results.

As an example, let us consider the reflection of cylindrical waves on top of a semi-infinite
cylinder, which is a limit case in two aspects: For large radii, the reflection coefficient is converging
towards that of SPPs for normal incidence at a planar interface [156]. Furthermore, it is equivalent
to the reflection of Hankel-type SPPs on cylinders of large thicknesses. Specifically, the dispersion
relation takes an explicit form [Eq. (98)], and it is possible to find a more explicit formula for the
reflection coefficient.

As a preliminary step, we have to calculate B− (k) · B+ (k) and σ using the permittivity ε (z)

and mode profile a (z)

B− (k) ·B+ (k) = ε2
dε

2
m

(γd + γm)
2

(k2 + γ2
d) (k2 + γ2

m)
,

σ =
εdεm

2γdγm
(γdεd + γmεm) =

ε2
dε

2
m

2

[
1

εmγm
+

1

εdγd

]
.

Using Eq. (83), we can further simplify

Am (kSPPR) · ε
2
dε

2
m

2

[
1

εmγm
+

1

εdγd

]
=

Bm (kSPPR)

2π · εd · kSPP
·
ˆ ∞
−∞

H1
m

(√
εdk2

0 − k2
zR
)

DH1
m

(√
εdk2

0 − k2
zR
)

·
√
εdk2

0 − k2
zε

2
dε

2
m

(γd + γm)
2

(k2 + γ2
d) (k2 + γ2

m)
dkz

to

Am (kSPPR) =
Bm (kSPPR)

π · εd · kSPP
· (γd + γm)

2

1
εmγm

+ 1
εdγd

ˆ ∞
−∞

H1
m

(√
εdk2

0 − k2
zR
)

DH1
m

(√
εdk2

0 − k2
zR
)

√
εdk2

0 − k2
z

(k2 + γ2
d) (k2 + γ2

m)
dkz .

With

(γm + γd)
2

1
εmγm

+ 1
εdγd

=
√−εdεm · k3

SPP ·
εm − εd
εm + εd

,
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which follows directly from the definitions of the γi, we obtain

Am (kSPPR) =
Bm (kSPPR)

εdπ
· √−εdεm · k2

SPP ·
εm − εd
εm + εd

ˆ ∞
−∞

H1
m

(√
εdk2

0 − k2
zR
)

DH1
m

(√
εdk2

0 − k2
zR
)

√
εdk2

0 − k2
z

(k2 + γ2
d) (k2 + γ2

m)
dkz

=
Bm (kSPPR)

εdπ
· √−εdεm ·

εmεd
εm + εd

· εm − εd
εm + εd

k2
0

ˆ ∞
−∞

H1
m

(√
εdk2

0 − k2
zR
)

DH1
m

(√
εdk2

0 − k2
zR
)

√
εdk2

0 − k2
z

(k2 + γ2
d) (k2 + γ2

m)
dkz .

Furthermore, we can relate

π
√−εdεmAm (kSPPR) = Bm (kSPPR) · ε2

p ·
(

1− εm
εd

)
I∞m

with the abbreviations

I∞m =

ˆ ∞
−∞

√
εd − u2

(
u2 − ε2m

εm+εd

)(
u2 − ε2d

εm+εd

) · H
1
0

(√
εd − u2 ω

cR
)

H1
1

(√
εd − u2 ω

cR
)du ,

εp ≡ εdεm
εd + εm

.

Then, the reflection coefficient is given by

rm =
π
√−εdεm ·H1

m (kSPPR)−DH1
m (kSPPR) ε2

p ·
(

1− εm
εd

)
I∞m

−π√−εdεm ·H2
m (kSPPR) +DH2

m (kSPPR) · ε2
p ·
(

1− εm
εd

)
I∞m

.

This result has, as expected, similarities to the reflection of SPPs at a planar interface [156].

A.2.2 Wire Nanoantennas

We have seen how the reflection coefficient can be calculated for circular NAs made of a stack of
materials. The theory can be used to predict the resonance positions and widths of these NAs (Fig.
6). Now we may turn to the next educative example, the calculation of the reflection coefficient
for metallic wire NAs.

Mode determination The first step is the determination of the plasmonic modes of the NA
and the free-space modes. We have to use a modal system for both NA and free-space with
mutual orthogonality relations. As we shall see later, such orthogonality relations will reduce the
complexity of the reflection coefficient determination considerably.

If a physical system exhibits a translational symmetry, Maxwell’s equations can be decomposed
into transversal and longitudinal components [154]. We assume the z-axis to be the wire’s rotational
axis. Then, the longitudinal components of the electric and magnetic fields, ψ = Ez or ψ = Hz,
follow the two-dimensional Helmholtz equation

(
∆t + k2

)
ψ (ρ, ϕ) = 0 with k2 = ε (ω)

ω2

c2
− k2

z and

∆t = ∂ρρ +
1

ρ
∂ρ +

1

ρ2
∂ϕϕ (84)
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in cylindrical coordinates for a specific frequency ω. The solution in z-direction, exp [±ikzz] will
be suppressed for visibility in the following calculations as well as the obvious ω-dependency of the
involved quantities. As we are still assuming non-magnetic media, we also set µ = 1.

For modes propagating in positive z-direction, i.e. with exp [ikzz]-dependency, the transversal
components can then be readily computed as

Et (ρ, ϕ) =
i

k2
[kz∇tEz (ρ, ϕ)− ωµ0ez ×∇tHz (ρ, ϕ)] and

Ht (ρ, ϕ) =
i

k2
[kz∇tHz (ρ, ϕ) + ωε0εez ×∇tEz (ρ, ϕ)] . (85)

For simplicity, we denote the plasmonic mode in the half-space z ≤ 0 with the superscript “-”
and all free-space modes with “+”. Parts of the field that are propagating in positive z direction
will be denoted with “i” for incoming and those propagating in the opposite direction with “r” for
reflected. Furthermore, we denote the embedding dielectric with a subscript “d” and the domain
of the metallic wire with “m”. Since the plasmonic mode under investigation has no ϕ-dependency
(m = 0) we may in addition suppress the ϕ coordinate completely.

We are interested in the plasmonic field of a wire that does only exhibit a longitudinal con-
tribution from the electric field consequently termed transverse-magnetic modes (TM). Those are
the most common plasmonic modes [30] but also TE modes can generally occur for thin metallic
structures [160]. Equations 84 and 85 are only valid in domains with constant permittivity ε (ω).
So we need to find solutions for ψ = Ez in each of the domains of interest while respecting the
appropriate boundary conditions.

The m = 0 Plasmonic Mode of a Metallic Wire, z ≤ 0 We now determine the mode
profile of a plasmonic mode propagating in positive z direction that is directly governed by Eq.
(85). The mode we are searching for is evanescent inside the metal but also in the dielectric. It is
natural to define damping constants γi as

γ2
i = k2

z − εi
ω2

c2
= −k2

i

and the solution of E−,iz (ρ) is given in terms of the Bessel Functions ∝ I0 (γmρ) inside of the metal
and ∝ K0 (γdρ) in the dielectric. Using

H−,iϕ (ρ) =
i

k2
i

ωε (ρ) ∂ρE
−,i
z (ρ) (86)

for ρ > R and for ρ < R, we find the dispersion relation of the m = 0 mode of a wire using the
continuity of both fields at ρ = R. It is an implicit definition using the γi’s and called Characteristic
Equation

K1 (γd ·R)

K0 (γd ·R)
· I0 (γm ·R)

I1 (γm ·R)
= −γdεm

γmεd
. (87)

This approach also yields explicit formulas for the electric and magnetic fields, namely

E−,iz (ρ) = H0 ·





i · γm·I0(γm·ρ)
ωεm·I1(γm·R) ρ < R

−i · γd·K0(γd·ρ)
ωεd·K1(γd·R) ρ > R

(88)
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and

H−,iϕ (ρ) = H0 ·





I1(γm·ρ)
I1(γm·R) ρ < R

K1(γd·ρ)
K1(γd·R) ρ > R

. (89)

Here, H0 merely acts as a constant to describe the field strength.

For the calculation of the actual wire mode it was rather useful to employ the field component
that are continuous at the boundary ρ = R. When considering the termination to free space,
however, it is more convenient to use E−,iρ as this field component is continuous at z = 0. It is
given by

E−,iρ (ρ) =
kz

ωε (ρ)
·H−,iϕ (ρ) . (90)

Modes in Free Space, z ≥ 0 Now we are interested in free-field solutions of the two-
dimensional Helmholtz equation for m = 0 and find the modal solution

ψk (ρ) = J0 (k · ρ) with k =
√
k2
o − k2

z and k2
o = εo

ω2

c2
.

It has to be marked here that k refers to a continuous modal index. Note that we use the subscript
“o” for the dielectric εo for z > 0. As the plasmonic modes of the wire are transverse magnetic,
we only need to investigate such free-space modes as well. So, H+

z ≡ 0 and E+
z,kz

(ρ, ϕ, z) =

J0 (k · ρ) exp [ikzz]. This is a solution for a given kz (or k); anym = 0 solution will be superposition
of such modes with certain amplitudes. We may write this superposition as

E+
z (ρ, z, ϕ) =

ˆ ∞
0

c (kz) J0

(√
k2
o − k2

z · ρ
)
eikzzdkz or

=

ˆ ∞
0

a (k) J0 (k · ρ) ei
√
k2o−k2·zdk ,

depending on a description using kz or k. These modes naturally also include evanescent field
components for kz > ko. It is obvious that the choice of the boundary at z = 0 simplifies the
calculation of the reflection coefficient and we can express E+

z at the termination of the wire as

E+
z (ρ) =

ˆ ∞
0

a (k) J0 (k · ρ) dk ,

suppressing the coordinates z and ϕ again. Thus, using Eqs. (86) and (90), we find

H+
ϕ (ρ) =

ˆ
a (k)

i

k2
εoω∂ρJ0 (k · ρ) dk

= −i

ˆ
a (k)

εoω

k
J1 (k · ρ) dk and

E+
ρ (ρ) = −i

ˆ
a (k)

kz =
√
k2
o − k2

k
J1 (k · ρ) dk .

To have some preliminary results comparable to those of Gordon, we may introduce rescaled Fourier
components of the free-space field via

t (k) = −ia (k)
εoω

k

79



to arrive at

H+
ϕ (ρ) =

ˆ ∞
0

t (k) J1 (k · ρ) dk and E+
ρ (ρ) =

ˆ ∞
0

t (k)

√
ω2εo − k2

ωεo
J1 (k · ρ) dk .

Now the modes of the wire and in free space are determined in a way that the continuity relations
can be employed. To find the relation to the reflection coefficient, the wire field is separated into
incoming and reflected components to introduce the reflection coefficient.

Decomposition of the Incoming and Reflected Fields We assume that the reflection of
the plasmonic mode does not excite other modes of the wire. Then, E−z is a superposition of the
incident and reflected parts

E−z = E−,iz + E−,rz . (91)

With the help of this superposition, we can use

E−,rz = −r · E−,iz to find (92)

E−,iz ± E−,rz = (1∓ r) · E−,iz ,

which defines the reflection coefficient of this mode.
For the calculated fields of the plasmonic mode we assumed a propagation in positive z direction.

But of course the reflected mode propagates in negative z direction which we have to take into
account. To do so, we may simply change kz → −kz going from incoming to reflected fields.

Using these considerations, we will now express E−z and H−ϕ in terms of the incoming fields.
This step introduces the reflection coefficient in a suitable manner. First, regarding H−ϕ , we find
with Eq. 92

H−,i/rϕ (ρ) =
i

k2
ωε (ρ) ∂ρE

−,i/r
z (ρ) , so

H−ϕ (ρ) = H−,iϕ (ρ) +H−,rϕ (ρ) =
i

k2
ωε (ρ) ∂ρ

[
E−,iz (ρ) + E−,rz (ρ)

]

=
i

k2
ωε (ρ) · (1− r) · ∂ρE−,iz (ρ) , hence

H−ϕ (ρ) = (1− r) ·H−,iϕ (ρ) .

Second, for E−ρ we deduce

E−,i/rρ (ρ) = ± kz
ε (ρ)ω

H−,i/rϕ (ρ) , so

E−ρ (ρ) =
kz

ε (ρ)ω

[
H−,iϕ (ρ)−H−,rϕ (ρ)

]
=

kz
ε (ρ)ω

· i

k2
ε (ρ)ω∂ρ

[
E−,iz (ρ)− E−,rz (ρ)

]

=
ikz
k2
· (1 + r) · ∂ρE−,iz (ρ) , which leads to

E−ρ (ρ) =
kz

ε (ρ)ω
· (1 + r) ·H−,iϕ (ρ) .

Now we have successfully introduced the reflection coefficient in the expression of the fields for
z ≤ 0. The only step that is left to do is to use the continuity of tangential electric and magnetic
fields to finally determine the reflection coefficient.

Free-space Mode Component Determination - Electric Field Continuity As a first
step, the continuity of E±ρ at the wire termination is used. This will provide the unknown Fourier
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components t (k) of the field in free space.

The continuity of E±ρ at z = 0 results in

(1 + r) · kz
ωε (ρ)

·H−,iϕ (ρ) =

ˆ ∞
0

t (k)

√
ω2εo − k2

ωεo
J1 (k · ρ) dk . (93)

An integration of the latter equation using J1 (k′ρ) ρ yields

(1 + r) ·
ˆ ∞

0

kz
ωε (ρ)

·Hi
ϕ (ρ, ϕ)J1 (k′ρ) ρdρ =

(1 + r)H0
kz
ω

[
1

εm

ˆ R

0

I1 (γmρ)

I1 (γmrs)
J1 (k′ρ) ρdρ

+
1

εm

ˆ ∞
R

K1 (γdρ)

K1 (γdrs)
J1 (k′ρ) ρdρ

]
=

ˆ ∞
0

t (k)

√
ω2εo − k2

ωεo
J1 (kρ) J1 (k′ρ) ρdρdk

= t (k)

√
ω2εo − k2

k · ωεo
, (94)

where in the last step the so-called closure equation

ˆ ∞
0

Jm (k1 · ρ) Jm (k2 · ρ) ρdρ =
1

k1
δ (k1 − k2) (95)

was used.

The remaining parts on the left hand side are

ˆ R

0

I1 (γmρ) J1 (kρ) ρdρ =
R

γ2
m + k2

[γm · I2 (γmR) J1 (kR) + k · I1 (γmR) J2 (kR)]

ˆ ∞
R

K1 (γdρ) J1 (kρ) ρdρ =
R

γ2
d + k2

[γd · J1 (kR)K2 (γdR)− k · J2 (kR)K1 (γdR)]

which were calculated using Mathematica [350].

Note that the latter two integrations are the main steps that lead to a one-dimensional integra-
tion. Only because the field of the plasmonic mode and the field in free-space were expressed using
modes that obey mutual orthogonality relations, we could find a rather explicit expression for the
free-space Fourier components t (k) [Eq. (94)]. If this integration step cannot be accomplished,
the final result can only be determined with respect to higher dimensional integrals. In this case,
this approach is not very useful and numerical considerations seem more appropriate [109]. Here
we find

t (k) = (1 + r)H0
kzk · εo√
ω2εo − k2

·R [A1 (k) +A2 (k)] with (96)

A1 (k) =
γm · I2 (γmR) J1 (kR) + k · I1 (γmR) J2 (kR)

εm · (γ2
m + k2) · I1 (γmR)

and

A2 (k) =
γd · J1 (kR)K2 (γdR)− k · J2 (kR)K1 (γdR)

εd · (γ2
d + k2) ·K1 (γdR)

.

The Fourier components t (k) of the free field are now completely determined with respect to the
still unknown reflection coefficient.

Reflection Coefficient Determination and Magnetic Field Continuity The closure equa-
tion provided a decent simplification of the t (k) using the continuity of Eρ. Now we employ an
integration of

´
Eρ ·Hϕρdρ ∝

´
H2
ϕ/ε (ρ) ρdρ to reduce the complexity of the problem as much as
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possible. Multiplying H±ϕ with H−,iϕ ρ/ε (ρ) and integrating over ρ, we have to solve

(1− r)
ˆ ∞

0

1

ε (ρ)
H−,iϕ (ρ)

2
ρdρ =

ˆ ∞
0

t (k)

ˆ ∞
0

J1 (kρ)
1

ε (ρ)
H−,iϕ (ρ) ρdρdk .

Due to the form of H−ϕ given in Eq. (89), the integral of the left-hand side evaluates to

ˆ ∞
0

1

ε (ρ)
H−,iϕ (ρ)

2
ρdρ = H2

0 ·
[

1

εm

ˆ R

0

[
I1 (γmρ)

I1 (γmR)

]2

ρdρ+
1

εd

ˆ ∞
R

[
K1 (γdρ)

K1 (γdR)

]2

ρdρ

]

≡ 1

2
·H2

0 ·R2 [B1 −B2] , with

B1 =
1

εm

I1 (γmR)
2 − I0 (γmR) I2 (γmR)

I1 (γmR)
2 and B2 =

1

εd

K1 (γdR)
2 −K0 (γdR)K2 (γdR)

K1 (γdR)
2 .

Using Eqs. (96) and (93), we can further identify

(1− r) · 1

2
·H2

0 ·R2 [B1 −B2] = (1 + r) ·H2
0

ˆ ∞
0

kzk · εo ·R2

√
ω2εo − k2

· [A1 (k) +A2 (k)]
2
dk .

The latter equation can now be solved for r to finally yield

r =
1−G
1 +G

with (97)

G =
1

B1 −B2

ˆ ∞
0

2 · kzk · εo√
ω2εo − k2

· [A1 (k) +A2 (k)]
2
dk .

The given result is the same as outlined in [157].

Most of the steps that were performed in this section were rather technical. But only the
explicit calculation reveals the main steps that enabled to calculate r in terms of a one-dimensional
integration. Namely, a direct the determination of the Fourier components of the free-space modes
seems to be the most important part. This is also the reason why an analytical determination of the
reflection coefficient for arbitrary terminations of wire NAs would not reduce to a one-dimensional
integral.

For instance, if the termination of a wire NA was half-spherical, an expansion of eigenmodes
must be done in spherical Bessel functions, whereas the eigenmode of the wire is a cylindrical Bessel
function. There is no orthogonality relation between these functions. Hence, the determination
of the reflection coefficients for different wire terminations as outlined in our Ref. [109] had to
be performed using sophisticated numerical methods. This conclusion also holds for general NA
terminations in other geometries. Only if the NA- and free-space-modes can be expressed in
eigenfunctions that allow orthogonality relations to the free-space modes, the reflection coefficient
can be given due to a one-dimensional integration.

A.3 Explicit Plasmonic Modes for Layered Structures

Hankel-type plasmonic modes as the ones considered for circular NAs (Sec. 2.3) have the same
dispersion relation as those for plane-wave plasmonic modes [161] with the same layer structure.
In the following we shall provide the analytic expressions for plasmonic modes used in the main
text: for semi-infinite layers, layers with finite thicknesses and structure consisting of two metallic
layers separated by a dielectric spacer. We closely follow App. C of Ref. [159].
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A.3.1 Semi-Infinite Layer

The relative permittivity of the semi-infinite layer is described by

ε (z) =




εd z > 0

εm z < 0
, with ε′d ≥ 0 and ε′m < −ε′d .

In this case, a plasmonic mode exists with the mode profile

a (z) =




εme

−γdz z ≥ 0

εde
γmz z ≤ 0

, ε (z) a (z) = εdεm




e−γdz z ≥ 0

eγmz z ≤ 0

and the well-known dispersion relation [26,160]

k2
SPP =

εmεd
εm + εd

k2
0 and γ2

i = k2
SPP − εik2

0 = − ε2
i

εd + εm
k2

0 . (98)

By definition, the γd/m are related to penetration depths of the plasmonic fields dp,m/d =
(
γ′m/d

)−1

.

A.3.2 Finite Thickness

For a metallic layer with finite thickness and equivalent embedding above and below, the permit-
tivity is given by

ε (z) =





εd z > d/2

εm |z| ≤ d/2
εd z < −d/2

.

In this case, there are two transverse magnetic plasmonic modes supported by the structure. They
can be described by

a± (z) =





εm exp
[
−γd

(
z − d

2

)]
z > d

2

∓εm exp
[
γd
(
z + d

2

)]
z < d

2

εd
hyp∓(γmz)

hyp∓(γm d
2 )

|z| ≤ d
2

,

where hyp∓ refers to the hyperbolic functions sinh and cosh. The dispersion relation is given by

tanh

(
γm

d

2

)
= −

[
γmεd
γdεm

]±1

with γ2
i = k2

SPP − εik2
0 .

Modes which are odd in Ez, thus odd in a (z) may be called even according to the symmetry of the
tangential electric field component [26]. The even mode here is denoted by a+ (z) and corresponds
to hyp− (x) ≡ sinh (x). An illustration of this mode can be found in Fig. 18 a). For the odd mode,
the corresponding conventions hold along with hyp+ (x) ≡ cosh (x).
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Figure 18: Plasmonic modes of a single metallic layer embedded in air and two metallic layers.
The material of the metals is taken to be silver with εm ≈ −8.8 + 0.3i at ν = 625 THz. In a), one
can see ε (z) a (z) for the even mode of a metallic layer with 30 nm thickness. The same quantity
is outlined in b) for the symmetric and antisymmetric modes of a structure consisting of two silver
layers with 30 nm thickness and a 30 nm air cavity in between. These modes can be understood
as symmetric and antisymmetric coupling between even single layer modes. The antisymmetric
mode is strongly confined inside the cavity. On the contrary, Ez of the symmetric mode is mostly
located outside the metal layers.

A.3.3 Two metallic Layers

We assume two metallic layers of thickness dm, which are separated by some dielectric with thick-
ness dd. Furthermore, this simple system is surrounded by the same dielectric, hence

ε (z) =

⎧⎨
⎩εd for z < 0, dm < z < dm + dd and 2dm + dd < z

εm for 0 ≤ z ≤ dm and dm + dd ≤ z ≤ 2dm + dd
.

The structure supports several plasmonic modes that can be characterized by the mode profile

ai (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εmC1+,ie
γd,iz z < 0

εdC2+,ie
γm,i(z−dm) + εdC2−,ie

−γm,iz 0 ≤ z ≤ dm

εmC3+,ie
γd,i(z−dm−dd) + εmC3−,ie

−γd,i(z−dm) dm < z < dm + dd

εdC4+,ie
γm,i(z−2dm−dd) + εdC4−,ie

−γm,i(z−dm−dd) dm + dd ≤ z ≤ 2dm + dd

εmC5−,ie
−γd,i(z−2dm−dd) 2dm + dd < z

,

with γ2
m/d,i = k2SPP,i − εm/d,ik

2
0. The dispersion relation and the coefficients Cl±,i can be found

by applying the transfer matrix method [160], which can also be used for more complex stack
compositions.

For dd = dm, only two dominating modes have to be considered. The first one is characterized
by

C1+,1 = C5−,1, C3+,1 = C3−,1, C2−,1 = C4+,1 and C2+,1 = C4−,1 .

With the conventions used in the previous subsection, it is natural to call this mode antisymmetric,
since it is symmetric in Ez ∝ a(z). The second mode is given due to the relations

C1+,2 = −C5−,2, C3+,2 = −C3−,2, C2−,2 = −C4+,2 and C2+,2 = −C4−,2

and consequently termed symmetric. The modes are illustrated in Fig. 18 b). However, the explicit
coefficients Cl±,i and corresponding dispersion relations for kSPP,i turn out to be too complicated
to be presented here.
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A.4 The Influence of the Purcell Effect on the Emitter Efficiency

In the vicinity of a QS it can also be useful to define an efficiency η̃ of the overall emission process
if the efficiency of the QS ηqs is smaller than unity:

η̃ =
P na

rad

P na
rad + P na

nr + P fs
nr

. (99)

With the intrinsic quantum efficiency of the QS

ηqs =
P fs

rad

P fs
rad + P fs

nr

, (100)

we may re-formulate Eq. (99) as

η̃ =
P na

rad/P
fs
rad

(P na
rad + P na

nonrad) /P fs
rad + (1− ηqs) /ηqs

≡ η ηqsF

ηqsF + η (1− ηqs)

Where F is the Purcell factor [Eq. (36)].

The overall emission efficiency η̃ exhibits two interesting regimes. If the quantum emitter has
a high quantum efficiency, i.e. ηqs ≈ 1, we find that η̃ → η. But if the QS has a low quantum
efficiency (ηqs � 1), then η̃ ≈ ηηqsF/ (ηqsF + η). In the limit of a strong Purcell effect for which
ηqsF � 1 holds, the efficiency of the QS approaches that of the NA, η̃ → η. Hence, if one is
interested in a highly efficient conversion process, for example in solar cells, the NA efficiency is
one of the main quantities of interest. But also the Purcell factor can be beneficial if the QS
exhibits a low quantum efficiency.

A.5 Notes on Non-Frequency Dependencies of ε (ω)

In most of the outlined studies we assumed that the permittivity of the plasmonic material depends
on the frequency only. But in general, there may be further dependencies and we will now briefly
discuss why we do not consider them.

We have neglected all thermodynamical aspects, e.g. dependencies on the temperature T ,
pressure p and so on. In particular the T -dependency of metals can be observed in experiments
[128]. However, it has been reported that the temperature dependency of ε (ω) for gold at room
temperature is rather small [351] and that the permittivity of small silver particles does not change
significantly from room temperature T0 ≈ 300K down to a few K [352].

Characteristic transition processes depending on T are energetically well separated to the
room temperature energy equivalent E0 = kB · 300K≈ 26meV. The Fermi energy for the in-
vestigated materials is in the eV regime and much bigger than E0. Specifically, we have EF =

{5.51, 5.48 and 11.63} eV for gold, silver and aluminium, respectively [128]. This implies that at
room temperature the density of conduction-band electrons is not significantly altered.

Other low-energy transititions are also energetically separated but the argumentation is a bit
more involved. At low temperatures, strong electron-phonon coupling (superconductivity) [128]
and electron-electron scattering becomes more important [353]. The Debye temperature Θ is not
only a characteristic temperature for thermal properties of metals, but also for ε (ω) [354]. Θ is
given by {165, 225 and 428}K for gold, silver and aluminium [128]. Thus, kBΘ is energetically
well separated from E0 for gold and silver.

For aluminium, however, Θ > T0 and another characteristic temperature below T0 has to be
found. Aluminium undergoes a drastic change in the material properties at the so-called critical
temperature Tc ≈ 1.2 K � T0 for which a phase transition to a superconducting state is achieved
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[355]. Aluminium-expoxy composites show a very small temperature dependence around 300K
for frequencies ν � 1MHz [356]. Hence we may assume that pure aluminium also has a very
small dependency on T . With all these experimental results and theoretical considerations, we can
assume that the permittivity of metals depends only weakly on their temperature for T ≈ T0 and
we can safely ignore this effect.

The structure of the material and impurities have an influence on the material, too [128]. A
comparison of permittivity measurements by different research groups has shown a small variation
of ε (ω) for gold, which suggests that the structure, i.e. crystalline or amorphous, is not a crucial
factor [357]. On the other hand, impurities have to be accounted for. They often depend on
the actual fabrication process and can be incorporated into theoretical considerations by effective
permittivity models [57].

Furthermore, if characteristic sizes of nanoparticles are below or comparable the mean free
path length of the material’s conduction electrons, its optical properties can be drastically altered
[358, 359]. In this case, finite-size effects have to be accounted for, i.e. by a phenomenological
increase of the imaginary part of ε (ω), which may increase the particle’s absorption considerably
[360]. Hence, finite-size effects may also alter the efficiencies η of NAs. Since η is an important
quantity for single-photon sources, we phenomenologically incorporate finite-size effects in Sec. 5.
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B Quantum Considerations

In 1885, Balmer found that the visible hydrogen spectrum lines are governed by a very simple
formula, namely

1

λn
= R∞

(
1

22
− 1

n2

)
where R∞ =

mee
4

8ε2
0h

3c
≈ 1.097 · 107m−1

is the Rydberg constant, which was at that time only known as numerical value and is now the
most precisely determined physical constant [361]. According to Bohr’s model, these lines could be
interpreted as transitions between discrete energy levels of the atom. Along with the explanations
of the black-body radiation by Planck in 1900 [362] and of the photoelectric effect by Einstein in
1905 [363], all these findings lead to the development of quantum mechanics.

Although Feynman is probably correct stating “I think I can safely say that nobody understands
quantum mechanics.” [364], quantum physics largely contributed to our understanding of nature.
The list of contributors reads like the who-is-who of physics of the early 20th century including
such illustre people as Heisenberg, de Boglie, Schrödinger, Born, Dirac and Pauli just to name a
few aside from those already mentioned. In this section we shall outline some quantum calculations
that are needed to understand the results of the main text.

B.1 Notes on Fermi’s Golden Rule

In this section we shall calculate the transition rates of a QS in first order perturbation theory
following Ref. [92]. The result is at the core of our semiclassical calculations and formally known
as Fermi’s Golden Rule.

If a QS is prone to the action of a time-varying potential V (t), perturbative approaches are
the first choice if the evolution of the QS can be suitably formulated in terms of a perturbative
expansion. In the following we review this ansatz that we used to calculate the action of an external
electromagnetic field on the QS (Sec. 2.4.1).

The Interaction Picture

A convenient way to treat time-dependent perturbations is the so-called interaction picture in
which a unitary transformation is used to calculate all observables depending on the transformed
potential V (t). We may start with a time-dependent Hamiltonian given by a part H0 responsible
for the isolated QS evolution and the aforementioned time-varying interaction potential V (t) as

H (t) = H0 + V (t) .

In the Schrödinger picture, Schrödinger’s equation

i~∂t |ψ (t)〉 = H (t) |ψ (t)〉 (101)

describes the evolution of the QS, where |ψ (t)〉 is the wave function in the usual Dirac notation. The
transformation to the interaction picture is then performed by the following unitary transformation:

|ψI (t)〉 = eitH0/~ |ψ (0)〉 and

VI (t) = eitH0/~V (t) e−itH0/~ ,
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where the subscript “I” denoted interaction picture. The rule applied to V (t) holds for any operator.
In the interaction picture, Schrödinger’s equation reads as

i~∂t |ψI〉 = i~∂teitH0/~ |ψ〉 = eitH0/~ {i~∂t |ψ〉 −H0 |ψ〉}︸ ︷︷ ︸
V (t)|ψ〉

= VI (t) |ψI〉 , (102)

the so-called Tomonaga-Schwinger equation. To calculate the transition probabilities at certain
times, it is necessary to solve Eq. (102). Formally, one finds

|ψI (t)〉 = S (t) |ψI (0)〉 with (103)

S (t) = T exp

{
1

i~

ˆ t

0

VI (t′) dt′
}

(104)

where T denotes the time ordering operator and the propagator that realizes the time-evolution of
the QS is a version of the famous S-matrix. With the help of Eq. (102), we obtained a reformulation
of the interaction problem that we can solve perturbatively by an expansion of S.

First-Order Perturbation Theory

Expanding the exponential in S up to the first order, we find that

S (t) ≈ 1 +
1

i~

ˆ t

0

VI (t′) dt′ . (105)

If a QS is initially in the state |ψI (0)〉 = |n〉, we can calculate the transition amplitudes to another
state |m〉 using Eq. (105) as

An→m (t) = 〈m|ψI (t)〉 = 〈m|S (t) |n〉 ≈ 〈m|n〉︸ ︷︷ ︸
=0

+
1

i~

ˆ t

0

〈m|VI (t′) |n〉 dt′

=
1

i~

ˆ t

0

〈m| eit′H0/~V (t′) e−it′H0/~ |n〉 dt′ =
1

i~

ˆ t

0

eiωmnt
′
Vmn (t′) dt′ , (106)

where
~ωmn ≡ Em − En , and Vmn (t) = 〈m|V (t) |n〉 .

The Vmn (t) are often called time-dependent matrix elements. The interaction potential V (r, t)

can often be written in the form of a slowly varying envelope and an oscillation at a frequency ω0,

V (t) = Venv (t) e−iω0t + V ?env (t) eiω0t . (107)

In that case the time-dependent transition amplitudes read

An→m (t) =
1

i~

ˆ t

0

eiωmnt
′
[
Venv,mn (t′) e−iω0t

′
+ V ?env,nm (t) eiω0t

′
]
dt′ (108)

where Venv,mn (t) = 〈m|Venv (t) |n〉. If we assume that Venv (t) vanishes for t < 0, we can extend
the integral from 0 to −∞ and the integral is basically a truncated Fourier transform of Venv,mn (t)

at ω = ωmn − ω0 plus its conjugate. So, depending on Venv (t), only a small part of the spectrum
Venv,mn (ω) around ω = 0 contributes to the integral, since characteristic frequencies of Venv (t) are
assumed to be much smaller than ω0.

For example, if a slow turning-on of the potential via

Venv (t) = Venve
ηt/2 with η � ω0
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is realized, the integration in Eq. (108) can again be considered from t = −∞ because of exponen-
tially damped values for t < 0. We find

An→m (t) ≈ −1

~

[
Venv,mne

−iω0t

ωmn − ω0 + iη/2
+

V?env,nme
iω0t

ωmn + ω0 + iη/2

]
eiωmnt+ηt/2 .

The time-dependent rate at which the QS is transferred from |n〉 to |m〉 is then just given as
the time derivative of the transition probability |An→m|2. In our particular case, where ω0 merely
enters as a parameter, we find

Γn→m (t) = ∂t |An→m (t)|2

≈ 1

~2
|Venv,mn|2 eηt

(
η

(ωmn − ω0)
2

+ (η/2)
2 +

η

(ωmn + ω0)
2

+ (η/2)
2

)
. (109)

Note that we have neglected terms oscillating at ±2iω0t and used |Venv,mn| =
∣∣V?env,mn

∣∣. Similar
expressions to Eq. (109) can be found using different time dependencies of Venv (t). The results
are always comparable and we find important insights to understand the transition rates of QSs
subject to a time-varying interaction in first-order perturbation theory, namely

1. Γn→m ∝ |Venv,mn|2: A transition from |n〉 to state |m〉 can only be caused by the corre-
sponding squared absolute of the matrix element Venv,mn = 〈m| Venv |n〉.

2. The slowly varying part of the interaction potential enters quadratically into the correspond-
ing transition rate. This behavior may be interpreted as the slowly varying intensity of an external
field.

3. If the switching process is much slower than the oscillation of the interaction, a first-order
transition may only take place if the interaction oscillates at a transition frequency of the quantum
system. In the studied case we can see this directly for η � ω0. In particular,

η

(ωmn ± ω0)
2

+ (η/2)
2 → 2πδ (ωmn ± ω0) . (110)

4. Equation (109) describes relaxation and absorption caused by the interaction since both
signs in the term ωmn ± ω0 are present.

Consequentially, in the limit of η → 0, i.e. a slow switching on, the transitions rates can be
written as

Γn→m (t) → 2π

~2
|Venv,mn|2 [δ (ωmn + ω0) + δ (ωmn − ω0)] . (111)

This result holds if the interaction potential is given by the assumed V (t) = Venv exp [ηt/2 + iω0t]+

H.c. in the limit η → 0. However, Eq. (111) is rather general since the limiting process of Eq.
(110) is not specific to the particular example studied here and often already called Fermi’s Golden
Rule after Dirac and Wentzel.

For an interaction potential with slowly varying amplitude [Eq. (107)], the transition rates
depend on the Fourier spectrum of the amplitude Venv (r,ω) which we shall calculate now. Following
Eq. (108), the absorption amplitude from state |n〉 to state |m〉 is given by

A+
n→m (t) =

1

i~

ˆ t

0

eiωmnt
′
Venv,mn (t′) e−iω0t

′
dt′ . (112)

For simplicity, we only consider the positive frequency of the transition amplitude denoted by a
superscript “+”. This part of An→m is related to absorption processes by the QS. The Fourier
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transform of Venv,mn (t′) may be used to reformulate Eq. (112) as

A+
n→m (t) =

1

i~

ˆ t

0

ˆ ∞
−∞

e−iωt′eiωmnt
′
Venv,mn (ω) e−iω0t

′
dωdt′ .

It may be assumed that V (r, t) = 0 for t < 0, such that the time integration can be extended to
−∞. Then, by interchanging the order of integrations, we find

A+
n→m (t) =

1

i~

ˆ ∞
−∞

Venv,mn (ω)

ˆ t

−∞
e−i(ω0+ω−ωmn)t′dt′dω

=
1

~

ˆ ∞
−∞

Venv,mn (ω)
e−i(ω0+ω−ωmn)t

ω0 + ω − ωmn
dω or

=
t

~

ˆ ∞
−∞

Venv,mn (ω + ωmn − ω0)
e−iωt

ωt
dω . (113)

Equation (113) establishes a direct link between the Fourier transform of the slowly varying enve-
lope and the absorption amplitude. Since the absorption rate is given by Γ+

n→m = ∂t |A+
n→m (t)|2,

a direct evaluation of the integral in Eq. (113) for general Venv,mn (t) is not senseful because of the
need to derive an absolute value. But we may still interprete our result for certain limits. In the
limit of t→∞, the time integration in Eq. (113) yields 2πδ (ω0 + ω − ωmn) and the result will be
A+
n→m (t→∞) = 2π/~V (ωmn − ω0).

On the other hand, the function exp [−iωt] /ωt in Eq. (113) is strongly peaked around ω = 0.
Thus, for t � 2π/ω0, only a small part of the spectrum of Venv,mn (t) will contribute. These
considerations lead to the final form of Fermi’s Golden Rule [Eq. (15)]. However, a further
discussion of the limitations and implications of Fermi’s Golden Rule is beyond the scope of this
work. For thorough interpretations see e.g. Refs. [365,366].

Second Order Perturbation Theory

The expansion of S (t) is not limited to a linear term in the interaction potential. If first order
transitions are not allowed or the perturbations are strong, one has to consider the second term as
well:

S (t) ≈ 1 +
1

i~

ˆ t

0

VI (t′) dt′ +

(
1

i~

)2 ˆ t

0

ˆ τ

0

VI (t′)VI (τ) dτdt′ .

The transition amplitude in second order perturbation theory is given by

A(2)
n→m ≈

(
1

i~

)2 ˆ t

0

ˆ τ

0

〈m|VI (t′)VI (τ) |n〉 dτdt′

=

(
1

i~

)2∑

k

ˆ t

0

ˆ τ

0

eit′ωmkVmk (t′) eiτωknVkn (τ) dτdt′ .

One can interprete this result as an excitation of |m〉 using all other eigenstates of the system.
Second-order interactions may be generally attributed to two-photon processes and such processes
might also occur close to NAs. Multiphoton processes are usually studied in the context of nonlinear
optics and describe effects such as optical bistability, higher-harmonic generation and frequency
mixing [185,367].
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B.2 Discriminating Electric and Magnetic Coupling

In Sec. 2.4.2 we determined the potential that governs the interaction of a charged particle and
the electromagnetic field as

Vem (r, t) = − e

m
A (r, t) · p .

We shall now derive the decomposition of Vem (r, t) into electric and magnetic contributions.

The Coulomb gauge is most convenient in a non-relativistic description of electromagnetic fields.
If no charges are present, one can always assume the “electrostatic” potential to vanish. Then, the
electromagnetic fields are determined by

E (r, t) = −∂tA (r, t) and B (r, t) = ∇×A (r, t) .

To differ between electric and magnetic interaction, we split A (r, t) · p into two parts:

A (r, t) · p =
im

~
A (r, t) · [H0, r]

=
im

~
{A (r, t) ·H0r−A (r, t) · rH0 +H0A (r, t) · r−H0A (r, t) · r}

=
im

~
{[H0,A (r, t) · r] + [A (r, t) , H0] · r} .

The first term is then given by

Ve (r, t) = −e i

~
[H0,A (r, t) · r] , (114)

and we shall make a small calculation to prove that it is the electric part of the interaction. To do
so, let us go back to Eq. (106), where the transition amplitudes An→m are given for an external
potential V (t) in first order perturbation.

Using Ve (t) from Eq. (114), a small calculation for a time-harmonic field shows

An→m (t) = − e

~2

ˆ t

0

〈m| eit′H0/~ [H0,A (r, t′) · r] e−it′H0/~ |n〉 dt′

=
e

i~

ˆ t

0

〈m| (−iωmn)
{
A (r) e−iω0t

′
+ c.c.

}
· r |n〉 eiωmnt

′
dt′ . (115)

Here, H0 |n〉 = ~ωn and ωmn = ωm−ωn have been used again. Because of Fermi’s Golden Rule, we
may replace ωmn with ±ω0. Then it is obvious that the electric coupling yields a Fourier transform
of −iωA (r, ω) · r = E (r, ω) · r, so

Ve (r, t) = −eE (r, t) · r . (116)

Let us now consider the second term, which presumably is attributed to the magnetic coupling.
It is easy to see that

[A (r, t) , H0] =
1

2m

{
A (r, t)p2 − p2A (r, t)

}
= − ~2

2m
∆A (r, t)

= − ~2

2m
[∇∇ ·A (r, t)−∇×∇×A (r, t)] =

~2

2m
∇×B (r, t) , so

[A (r, t) , H0] · r =
~2

2m
∇×B (r, t) · r =

~2

2m
B (r, t) · (r×∇)

=
~
−i2m

B (r, t) · L = i
µB
e
B (r, t) · L
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where µB = e~/2m, p = −i~∇ and L = r× p was used. So, it is natural to define

Vm (r, t) =
µB
~

B (r, t) · L (117)

as the magnetic coupling.

Note that Eqs. (114) and (22) include the coupling of all multipole moments of the electro-
magnetic field to the QS [78].

B.3 Semiclassical Electric Multipole Coupling in the Quasistatic Regime

Starting from Eq. (21) (Ve (r, t) = −eE (r, t) · r) we outlined a theory to describe the interaction
of a semiclassical electric field with a QS based on the local multipole coefficients of the electric
field (Sec. 4). Unfortunately, a multipole decomposition is often quite involved because vectorial
character of the electromagnetic fields. It is worth to ask whether a description in terms of a scalar
quasistatic theory can be formulated.

This approach might be justified from a fundamental point of view: If a classical picture of
a hydrogen’s atom electron is considered within Bohr’s model, one may attribute it an angular
momentum of L !

= n~ = mvr. This angular momentum implies a characteristic velocity vc =

~/ma0 and likewise a characteristic time scale tc = ma2
0/~ = a0/αc ≈ 2.4 · 10−17s. On the other

hand, for visible light the smallest typical timescale is that for λviolet ≈ 425nm which corresponds
to a typical time of tlight ≈ 1.25 · 10−15s, i.e. tc � tlight.

Hence, the electron will an almost static field compared to its characteristic time scales. This
is also the reason why short laser pulses are needed to study the dynamics of QSs. Furthermore,
since 〈r〉 ≈ a0 � λviolet, retardation effects along the QS do not play any significant role. Overall
it seems justified to use quasistatic solutions to describe the coupling of the electromagnetic field
to QSs. Note that the quasistatic potential φ (r, t) might vary on length scales much smaller
than λviolet such that dipole-forbidden transitions as discussed in Sec. 4 are included within the
quasistatic description.

In the quasistatic limit a quasistatic potential φ (r, t) interacts with the QS. This potential
obeys Laplace’s equation ∆φ (r, t) = 0. In the vicinity of r = 0, φ (r, t) can be expanded according
to

φ (r, t) = T (t)
∞∑

l=0

l∑

m=−l
p̃lm

√
(l −m)!

(l +m)!
rlPml (cos θ) exp (imϕ) + c.c. . (118)

The coefficients p̃lm ∈ C denote multipole coefficients and characterize the classical electric field.
Because of the complex nature of the p̃lm and of T (t) a complex conjugate of φ (r, t) had to be
introduced. The semiclassical quasistatic interaction of a QS with the electric field is then governed
by

H = H0 + V static
e (r, t) = H0 + eφ (r, t) .

Within this framework of a semiclassical quasistatic interaction we can derive the relation of the
coefficients p̃lm to their fully relativistic counterparts pml which were introduced in Sec. 4.2.
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B.3.1 Scale Coefficients between Mie-Theory and Quasistatic Approximation

Within the quasistatic theory, the radial component of the electric field is given as

Er (r, t) = − [∇φ(r, t)] er

= −T (t)
∞∑

l=0

l∑

m=−l
p̃lm

√
(l −m)!

(l +m)!
lrl−1Pml (cos θ) eimϕ + c.c.

In comparison, the radial component of the field incident on a sphere in Mie-Theory reads as [153]

Er (r, t) = −T (t)
∞∑

l=1

l∑

m=−l
plmil+1l(2l + 1)(l + 1)

(l −m)!

(l +m)!

jl(kr)

kr
Pml (cos θ) exp (imϕ) + c.c. .

Using the asymptotic behaviour of the spherical Bessel function jl (kr) for kr → 0,

jl(kr)→
(kr)

l

1 · 3 · ... · (2l + 1)
,

one may deduce

Er (r, t) ≈ −T (t)
∞∑

l=1

l∑

m=−l
plmil+1 l(l + 1)

1 · 3 · ... · (2l − 1)

(l −m)!

(l +m)!
(kr)l−1Pml (cos θ) eimϕ + c.c. .

The latter equation is a quasistatic approximation to the fully relativistic case in terms of the
coefficients plm. Comparing the radial parts of the electric field,

p̃lm = il+1 l + 1

1 · 3 · ... · (2l − 1)

√
(l −m)!

(l +m)!
kl−1 plm .

The latter equation provides the connection between the electrodynamic coupling Ve (r, t) = −eE (r, t) · r
and its quasistatic counterpart V static

e (r, t) = eφ (r, t) in regards to their respective multipole co-
efficients.

B.4 Steady-State Analysis of a Three-Level System

In Sec. 4.4 we used

ṅ0 = γ10 · n1 − Γ02 · n0 ,

ṅ1 = γ21 · n2 − γ10 · n1 , and

ṅ2 = Γ02 · n0 − γ21 · n2 , (119)

as rate equations of a three-level system.

Assuming a steady state with ṅi = 0, one may eliminate n0 and n2 in favour of n1:

n0 =
γ10

Γ02
· n1 , hence n2 =

Γ02

γ21
· n0 =

Γ02

γ21
· γ10

Γ02
· n1 .

Due to probability conservation, n0 + n1 + n2 = 1 holds and we find

1 = n0 + n1 + n2 =

(
γ10

Γ02
+ 1 +

Γ02

γ21
· γ10

Γ02

)
n1 , and thus

n1 =
γ21 Γ02

γ10 γ21 + γ21 Γ02 + γ10 Γ02
.
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We may further simplify this equation if we take the limit γ21 →∞, i.e. when the nonradiative
relaxation rate from the highest to the intermediate state is by far the fastest process:

lim
γ21→∞

n1 =
Γ02

γ10 + Γ02
.

This is a special case of the steady state dynamics of the investigated three-level system. Never-
theless, it is also the exact solution of a two-level system incoherently pumped to the excited state
with probability n1 at the rate Γ02 and with spontaneous emission rate γ10 from excited to ground
state. Thus, assuming that γ21 � {Γ01, γ10}, we can describe the dynamics of a three-level system
approximately by that of a two-level system (Sec. 5.1).

B.5 Spontaneous Emission revisited

In Sec. 3.2 we have seen how spontaneous emission can be derived in the context of a field quanti-
zation in dispersive media. In this section we will repeat the derivation. A more condensed scalar
approach will lead us to an effective interaction of the radiating two-level-system with its environ-
ment in form of a damped Jaynes-Cummings model. Furthermore, we shall give explicit results
for the case of a coupling to a Lorentzian spectral density, i.e. a blueprint for the spontaneous
emission dynamics of a QS in the vicinity of a single-mode NA. We have used this correspondance
to check the validity of the QNM quantization approach in Sec. 3.5. The derivations are closely
based on chapter 10 in Ref. [220].

B.5.1 Determination of time-dependent non-Markovian Loss Rate

In Sec. 3.2 we used the wave function approach

|ψ (t)〉 = e−iω̃tc1 (t) |1, {0}ω〉+

ˆ ∞
0

e−iωtc0,ω (r, t) |0, {1}ω〉 dωdV , (120)

with new transition frequency ω̃ = ω10 − δω and yet to be found spectral shift δω to derive

ċ1 (t) = −iδωc1 (t)−
ˆ t

0

K (t− t′) c1 (t′) dt′ with the kernel

K (t− t′) =
1

πε0~

ˆ ∞
0

ω2

c2
e−i(ω−ω̃)(t−t′)d10 · =G (rqs, rqs, ω) · d01dω , (121)

which we then solved within the Markov approximation
´ t

0
K (t− t′) c1 (t′) dt′ → c1 (t)

´∞
0
K (t− t′) dt′.

We also related the spectral shift to the real part of the Greens function. Let us tackle this prob-
lem now in a more abstract form where the kernel K (t− t′) is also responsible for the shift in the
equation of motion. We shall consider only a sum over harmonic oscillators and treat the coupling
in a scalar way, which we may always do, since d10 ·=G (rqs, rqs, ω) ·d01 is a scalar quantity. Hence,
we do not lose any generality, but we may formulate the problem in a very concise way. First, we
shall define the Hamiltonian similar to Eq. (32) as

H = ~ωqsσ+σ− +
∑

k

~ωka†kak +
∑

k

(
~κkσ+ak + ~κ?ka

†
kσ−

)
. (122)

Again, σ− and ak are the annihilation operators of the QS and the k’th harmonic oscillator,
respectively. The number of photons is conserverd in the system. and we may restrict ourselves to
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an analysis of a wave function of the form

|ψ (t)〉 = c1 (t) |1, {0}〉+
∑

k

c0,k (t) |0, {1}k〉 , (123)

in which |1, {0}〉 is the QS in its first excited state, the field in its ground state and |0, {1}k〉
denotes that the k’th harmonic oscillator is in its excited state. Using Schrödinger’s equation, we
can calculate the evolution equations for the ci (t) as

i~

[
ċ1 (t) |1, {0}〉+

∑

k

ċ0,k (t) |0, {1}k〉
]

= H

[
c1 (t) |1, {0}k〉+

∑

k

c0,k (t) |0, {1}k〉
]

= ~ωqsc1 (t) |1, {0}k〉+
∑

k

~ωkc0,k (t) |0, {1}k〉+

∑

k

~κkc0,k (t) |1, {0}k〉+
∑

k

~κ?kc1 (t) |0, {1}k〉 .

Here we have used
{∑

k

~κkσ+ak

}∑

l

c0,l (t) |0, {1}l〉 =
∑

k

~κkc0,k (t) |1, {0}k〉 and

{∑

k

~κ?ka
†
kσ−

}
c1 (t) |1, {0}k〉 =

∑

k

~κ?kc1 (t) |0, {1}k〉 .

The orthonormality of the states yields

iċ1 (t) = ωQSc1 (t) +
∑

k

~κkc0,k (t) and iċ0,k (t) = ωkc0,k (t) + ~κ?kc1 (t) .

Now it is evident that a transformation of the form c0,k (t) → c0,k (t) exp [−iωkt] and c1 (t) →
c1 (t) exp [−iωqst] gives rise to

ċ1 (t) = −i~
∑

k

κkc0,k (t) exp [−i (ωk − ωqs) t] and

ċ0,k (t) = −i~κ?kc1 (t) exp [−i (ωqs − ωk) t] . (124)

The latter equation is a scalar equivalent to Eq. (33).

There are no additional photons in the system, i.e. c0,k (0) = 0. Then Eq. (124) can be
integrated to yield

c0,k (t) = −
ˆ t

0

i~κ?ke−i(ωqs−ωk)t′c1 (t′) dt′ , so

ċ1 (t) = −
ˆ t

0

∑

k

|~κk|2 e−i(ωk−ωqs)(t−t′)c1 (t′) dt′

≡ −
ˆ t

0

Ks (t− t′) c1 (t′) dt′ (125)

Equation (125) is formally equivalent to Eq. (121) without the distinction of emission rate and
shift of the resonance frequency δω. We have also introduced the Kernel Ks (t− t′), which is again
related to the spectral density via

Ks (t− t′) =

ˆ ∞
−∞

Js (ω) e−i(ω−ωqs)(t−t′)dω .
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The subscript “s” shall denote the difference to the former defined K and J as the new formulation
corresponds to a scalar formulation and also incorporates δω.

It is now possible to show the formal equivalence to a model in which the QS evolves dissipa-
tively. To that end we introduce the reduced density matrix of the QS according to

ρqs (t) = trEM [|ψ (t)〉 〈ψ (t)|] =

(
|c1 (t)|2 c?0c1 (t)

c0c
?
1 (t) 1− |c1 (t)|2

)
.

Given a Hilbert space HA⊗HB , the partial trace to find the reduced density matrix may be defined
as ρA = trB [ρ] with trB [A] =

∑
n 〈ψn|A |ψn〉B . The |ψn〉B are the eigenstates of the subsystem

HB [195]. For the latter result one had to extend |ψ (t)〉 in Eq. (123) by the term c0 |0, {0}k〉 to
perform the partial trace. Note that for our problem c0 is constant and may very well be set to
zero. Since the density matrix evolves as i~∂tρ (t) = [H, ρ (t)], the equations of motion for ρqs (t)

can be derived:

i~∂tρqs (t) = i~

(
∂t |c1 (t)|2 c?0ċ1 (t)

c0ċ
?
1 (t) −∂t |c1 (t)|2

)
= [Heff , ρqs (t)] + i~Leff [ρqs (t)] . (126)

Here, effective Hamiltonian Heff and Lindblad Leff operator have been introduced. They are to be
determined to interpret the equations of motion accordingly. To do so, it is important to remember
that the evolution of a two-level system prone to dissipation is given by

i~∂tρ (t) = [HTLS, ρ (t)] + i~Ldecay [ρ]

= [~ωσ+σ−, ρ (t)] + i~
γ

2
{2σ−ρ (t)σ+ − ρ (t)σ+σ− − σ+σ−ρ (t)} . (127)

One may now check if Eq. (126) can be written in the form of a lossy two-level system with some
loss rate γ.

Using some matrix algebra one may deduce that the Lindblad operator Leff is equivalent to
Ldecay if the decay rate is time varying and given by

γ (t) = −2<
(
ċ1 (t)

c1 (t)

)

and further if ωqs → ωqs + δω (t) with

δω (t) = −2=
(
ċ1 (t)

c1 (t)

)
.

Thus, also a time-dependent frequency shift is included in the theory. These results are still valid
within the RWA, no further approximation has been made. Most importantly, the bath of harmonic
oscillators act as a dissipation channel for the QS even though no dissipation is given in the original
Hamiltonian (Eq. 122).

B.5.2 Coupling to a Lorentzian spectral Density: Exact Evolution

In Sec. 3.4 we claimed that, if the spectral density can be written as a superposition of oscillators,
we can use the Jaynes-Cummings model to understand NA-QS interactions. In this subsection
we shall investigate the spontaneous emission of a two-level system interacting with a Lorentzian
spectral density. These results were used in Sec. 3.5 to compare the evolution of a such a QS in
the vicinity of a single lossy harmonic oscillator to the case at hand.
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A Lorentzian spectral density of the form

Js (ω) =
γwc

2π

Γ2

(ωna − ω)
2

+ Γ2
(128)

shall be assumed. Here, ωna is the resonance frequency of the NA and Γ its loss rate. At this
point, γwc is just a constant that accounts for the coupling strength between QS and NA. Js (ω)

was chosen to be Lorentzian as such a spectral density is found by González-Tudela [213] for a
dipole spontaneously emitting very close to a metallic surface. Such a spectral density is used
by Vogel and Welsch to discuss spontaneous emission [185] [Eq. (10.45)] and also Breuer and
Petruccione [220] utilize it as an “effective spectral density” [Eq. (10.43)]. Hence to be comparable
to the literature and since a treatment of a full complex Jho (ω) = <Jho (ω) + iJs (ω) yields very
similar results we neglect the spectral shift δω at this point.

By integration we find the kernel

Ks (t− t′) =
γwc

2π

ˆ ∞
−∞

Γ2

(ωna − ω)
2

+ Γ2
e−i(ω−ωqs)(t−t′)dω

=
1

2
γwc Γe−Γ|t−t′|−i(ωna−ωqs) .

We may briefly relate this result to a fully complex spectral density caused by a harmonic
oscillator. In this case

Jho (ω) =
γwc

2π
=
(

A

ω2
na − ω2 − iΓnaω/2

)
,

with some constant A that we can find by comparing Jho (ω) to Js (ω). A quick calculation shows
that Js (ω) ≈ =Jho (ω) for ω > 0 if A = Γnaωna and Γna = 2Γ.

Because of the relative simplicity of Ks, we can find the solution to Eq. (125) with the help of
Mathematica [350]:

Ks[τ_] = 1
2
γwcΓ exp [−Γτ − I (ωna − ωqs)];

LaplaceTransform[c’[t] == -Integrate[c[t1] Ks[t - t1], {t1, 0, t}], t, s];

Solve[%, LaplaceTransform[c[t], t, s]];

Solution = InverseLaplaceTransform[%, s, t];

For ωna = ωqs, the exact evolution of the excited state amplitude simplifies to

c1 (t) = c1 (0) e−Γt/2

{
cosh

(
d t

2

)
+

Γ

d
sinh

(
d t

2

)}
(129)

with d =
√

Γ2 − 2γwcΓ.
With the help of Eq. (129), the time dependent loss rate reads

γ (t) = γwc · <
(

Γ sinh (d t/2)

d cosh (d t/2) + Γ sinh (d t/2)

)
, (130)

and no Lamb shift is present if d ∈ R, i.e. if 4γwc < 2Γ = Γna. This condition characterizes the
weak-coupling regime, equivalent to Eq. (72) for Nqs = 1.

Both sinh (ξ) and cosh (ξ) have the same behavior for lare arguments. Since in the weak coupling
regime d ≈ Γ, γ (t) → γwc for t → ∞. Thus we have identified γwc as the spontaneous emission
rate of the weak coupling regime, where c1 (t) = c1 (0) exp (−γwct/2) [Eq. (35)].

Interestingly, the exact expression for the αn [Eq. (128)], which were introduced as normal-
ization constants in Eq. (43) has been implicitly determined. Comparing these two equations,
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Figure 19: Difference between Markov approximation result for the spontaneous emission of a
two-level system coupled to a Lorentzian spectral density as given in Sec. 3.2 compared to the
exact solution outlined in App. B.5; both within the RWA. Left: time-dependent emission rate
γ (t) in units of γwc (blue dashed line). Blue, magenta and yellow thick lines indicate an increased
coupling (γwc/Γ = 0.05, 0.2, and 0.4). The deviation to the Markovian solution is always clearly
visible for γwct < 1 but gets less pronounced for γwct > 1 and lower coupling. Right: probability
of the excited state of the two-level system |c1 (t)|2. The same legend as in the left plot with an
additional plot of γwc/Γ = 10 (green line).

we find that, αn = γn,wcΓn,na/4, which is equivalent to the coupling κ2
n, since γn,wc = 4κ2

n/Γn,na

at resonance (see App. B.8). In Fig. 19 we compare the exact result for the Weisskopf-Wigner
problem for a Lorentzian spectral density to the simple Markovian solution for different ratios of
γwc/Γ. The deviations are pronounced for increased coupling.

B.6 Spectral Density, Local Density of States, and the Purcell Factor

With regard to our result for the emission rate in the weak-coupling regime [Eq. (35)], it is worth
to define the local density of states (LDOS). It is often used in the literature and directly related
it to the spectral density J (ω).

In free-space, emission rate of a dipole with dipole moment d10 oscillating at ωqs is given
by [123]

γfs =
ω3

qs |d10|2

3πε0~c3
=
πωqs |d10|2

3ε0~
· ρfs (r, ω) with (131)

ρfs (r, ω) =
6ω

πc2
· 1

3
tr [=Gfs (r, r, ω)] =

ω2

π2c3
.

Here, ρfs (r, ω) denotes the LDOS of free space where trace of the Green’s function is taken to
average over the different orientations of the QS. Comparing γwc and γfs, the partial local density
of states, pLDOS, is introduced as [cf. Eqs. (38) and (35)]

ρ (r, ω, ed) =
6ω

πc2
ed · =G (r, r, ω) · ed ≡

6ε0~
ω |d10|2

J (ω) , using (132)

γwc
!
=

πω |d10|2
3ε0~

· ρ (r, ω, ed) =
1

πε0~
ω2

c2
d10 · =G (r, r, ω) · d01 = 2πJ (ω) .

Here, ed = d10/ |d10| is the unit vector in the direction of the QS’s dipole moment.

Regarding Eq. 132, ρ (r, ω) is just a rescaled version of the spectral density J (ω). An averaging
procedure in ρ is usually not senseful in the vicinity of NAs as they generally impose strongly
varying interactions to different polarizations of a QS.
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We can further relate the Purcell factor F (ω) to ρ (ω) and J (ω). With Eq. (132) we get

F (ω) = η
γwc

γfs
= η

6π2ε0~c3

ω3 |d10|2
J (ω) .

If the efficiency η is only weakly depending on ω, the Purcell factor F (ω) is approximately pro-
portian to J (ω) /ω3. Then F (ω) can be used to show the Lorentzian character of J (ω) close to
NAs (Sec. 3.4).

B.7 The Modified Interaction Picture

A problem in quantum mechanics is the coupling of systems with different eigenfrequencies. In this
situation it is often convenient to calculate quantities in a picture that is applied to the frequency
of one of the systems or for example at the frequency of an external illumination. This leads to a
Hamiltonian in the so-called modified interaction picture. In the following we shall calculate the
Hamiltonian for two harmonic oscillators coupled to a two-level system in this picture. It will be
obvious that this approach dramatically reduces the complexity of the problem. Furthermore, the
meaning of the rotating-wave approximation (RWA) can be discussed.

For time-dependent interactions (cf. Sec. B.1), the Hamiltonian H = H0 + V may be given as
the free evolution of the involved systems, H0, and a term corresponding to interactions, V . As
an example, a two-level system with creation (annihilation) operator σ+ (σ−) and eigenfrequency
ωqs is coupled to a harmonic oscillator. The latter is modeled by creation (annihilation) operators
a† (a) and eigenfrequency an ωna:

H0 = ~ωna

(
a†a+

1

2

)
+ ~ωqsσ+σ− and V = ~κ (σ+ + σ−)

(
a+ a†

)
.

A generalization to more complicated interactions is straightforward.

A transformation to the eigenfrequency of the two-level system is suitable if this QS is pumped
incoherently [cf. Eq. (67)]. The “transformation Hamiltonian” H̃ is then given by

H̃ ≡ ~ωqs

(
a†a+ 1/2

)
+ ~ωqsσ+σ− . (133)

Note that in comparison to H, all frequencies are replaced by the eigenfrequency of the two-level
system.

The unitary operator U (t) = exp
[
itH̃/~

]
is further used to transform into the modified inter-

action picture. The state of the system in this picture is related to the Schrödinger picture via
|ψ〉mI = U (t) |ψ〉 and operators are transformed according to OmI (t) = U (t)OU† (t). Naturally,
the Hamiltonian H commutes with H̃ and thus [H,U ] = 0 holds.

As in the derivation of the Tomonaga-Schwinger equation in Sec. 2.4.1, it can be concluded
which operators may be attributed to the time evolution of |ψ〉mI. Explicitly,

i~∂t |ψ〉mI = i~∂teitH̃/~ |ψ〉 = eitH̃/~
{

i~∂t |ψ〉 − H̃ |ψ〉
}

= eitH̃/~
{
H0 − H̃ + V

}
|ψ〉 = eitH̃/~

{
H0 − H̃ + V

}
e−itH̃/~ |ψ〉mI

= {H0,mI + VmI} |ψ〉mI .

Here,

H0,mI = ~ (ωna − ωqs)

(
a†a+

1

2

)
, VmI = eitH̃/~V e−itH̃/~ .

This form of the Hamiltonian is often convenient. Deviations from a free oscillation frequency are
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expressed in terms of the detuning ∆ω = ωna − ωqs. Without detuning, H0,mI simply vanishes.
To transform the interaction potential VmI into a suitable form, the Baker-Campbell-Hausdorff-

formula may be used:

eXY e−X =
∞∑

m=0

1

m!
[X,Y ]m with [X,Y ]m =

[
X, [X,Y ]m−1

]
and [X,Y ]0 = Y .

First, for an arbitrary ω,

eiωt(a†a)ae−iωt(a†a) = a+ iωt
[
a†a, a

]
+

(iωt)
2

2

[
a†a,

[
a†a, a

]]
+ . . .

= a+ iωt (−a) +
(−iωt)

2

2
a+ . . . = e−iωta ,

since
[
a†a, a

]
= −a. Analogously,

eiωt(a†a)a†e−iωt(a†a) = eiωta† and eiωtσ+σ−σ±e
−iωtσ+σ− = e±iωtσ± .

Then, the modified interaction potential can be determined as

VmI (t) = ~κeit{ωqs(a†a+ 1
2 )+ωqsσ+σ−} (σ+ + σ−)

·
(
a+ a†

)
e−it{ωqs(a†a+ 1

2 )+ωqsσ+σ−}

= ~κeitωqsσ+σ− (σ+ + σ−) e−itωqsσ+σ−

·eitωqsa
†a
(
a+ a†

)
e−itωqsa

†a

= ~κ
(
eiωqstσ+ + e−iωqstσ−

) (
e−iωqsta+ eiωqsta†

)
.

In the latter formulation we can directly see how the transformation introduces oscillatory terms
in the interaction potential. Most importantly, terms with two creation (annihilation) operators
are highly oscillatory. The RWA is then introduced neglecting these rapidly oscillating terms. In
this approximation, the interaction potential simply reads

VmI = ~κ
(
σ+a+ a†σ−

)
.

Such an interaction has the advantage that the total excitation number operator Nall = a†a+σ+σ−
is a conserved quantity.

Note that the eigenfrequency of the QS, ωqs, was used to define H̃ [Eq. (133)]. Likewise, one
may chose any other frequency for this transformation. For example, if a driving field oscillating
at ωdr is present, H̃ = ~ωdr

(
a†a+ 1

2

)
+ ~ωdrσ+σ− can be employed. This would yield H0,mI =

~ (ωna − ωdr)
(
a†a+ 1

2

)
+ ~ (ωqs − ωdr)σ+σ−. In this case, the Hamiltonian is said to be “in the

rotating frame”. We have used this picture in Sec. 6 to describe the strong coupling of NAs to QSs
subject to an external monochromatic field.

B.8 Emission Rates of a Two-Level System coupled to multiple Har-
monic Oscillators

In this section we calculate the emission rate of a two-level system coupled to a sum of dissipative
harmonic oscillators. Although in the main text only single-mode harmonic oscillators are used
for calculations, a generalization to more harmonic oscillators is straightforward. This formulation
may be used to specifically incorporate a coupling to dark modes.

In the Schrödinger picture, the corresponding Hamiltonian H = H0 + V is given by
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H0 =
∑

l

~ωl
(
a†l al +

1

2

)
+ ~ωqsσ+σ− and

V = ~ (σ+ + σ−)
∑

l

κl

(
al + a†l

)
.

As throughout the thesis, al (a
†
l ) are the annihilation (creation) operators of the l’th harmonic oscil-

lator, i.e. the l’th NA mode and σ− (σ+) are the annihilation (creation) operators of the two-level
system; ωl and ωqd are the oscillators and two-level systems resonance frequencies, respectively.
Furthermore, the κl denote coupling constants. Using the unitary transformation

|ψ〉H = eiHt/~ |ψ〉S

we transform into the Heisenberg picture (see also App. B.7). As the transformation is unitary
and obviously commutes with H, the Hamiltonian is unchanged in the new picture.

As it is discussed in the main text and in Refs. [89,279], we disregard fluctuation terms within
the so-called cold reservoir limit (CRL), which excludes any reaction of the environment that
is responsible for all irreversible processes. Then, phenomenologically introducing the harmonic
oscillator loss rates Γl and the incoherent pumping rate R, the equations of motion for the operators
of interest are given by

ȧl = − i

~
[al, H]− Γl

2
al = −i

[
al, ωla

†
l al + κla

†
l (σ+ + σ−)

]
− Γl

2
al

= −iωlal − iκl (σ+ + σ−)− Γl
2
al ,

σ̇− = − i

~
[σ−, H]− R

2
σ− = −i

[
σ−, (σ+ + σ−)

∑

l

κl

(
al + a†l

)
+ ωqsσ+σ−

]
− R

2
σ−

= −i

[∑

l

κl

(
al + a†l

)]
(−σz)− iωqsσ− −

R

2
σ− and

σ̇z = − i

~
[σz, H] +R (1− σz) = −i

[
σz,

{∑

l

κl

(
al + a†l

)}
(σ+ + σ−)

]
+R (1− σz)

= −i (2σ+ − 2σ−)
∑

l

κl

(
al + a†l

)
+R (1− σz) .

From these equations it can be seen that we assume an incoherent pump of the QS only. On
the contrary, the NA state may decay due to radiation or dissipation; Γl = Γrad

l + Γnr
l . Because

of the energy flow to the QS, it is worth to consider slowly varying amplitudes of the operators
oscillating at the QS’s transition frequency, i.e. in the rotating frame:

σ± ≡ σ̃±e
±iωqst and a†l ≡ ã

†
l e

iωqst .

For the operators in the rotating frame, the equations of motion are given by

˙̃al − iωqsãl = −iωlãl − iκlσ̃− −
Γl
2
ãl ,

˙̃al = −i∆ωlãl − iκlσ̃− −
Γl
2
ãl with ∆ωl = ωl − ωqs ,
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˙̃σ− − iωqsσ̃− = i

{∑

l

κlãl

}
σz − iωqsσ̃− −

R

2
σ̃−

˙̃σ− = i

{∑

l

κlãl

}
σz −

R

2
σ̃− , and

σ̇z = −2i
∑

l

κl

(
σ̃+ãl − ã†l σ̃−

)
+R (1− σz) .

As an important physical quantitiy, the detuning of the l’th oscillator mode to the excitation, ∆ωl,
appears in the equations for the oscillator annihilation operators ãl. Furthermore, the RWA is
applied. Hence, fastly oscillating terms of the form ~κlσ+a

†
l are neglected to find a closed-form

analytical result.

Steady State Solution

It may be assumed that a steady state exists for which all time-derivatives of the operators vanish.
In this case, the 〈ṅl〉 can be determined to yield the emitted photon rate of the lth mode.

The operators’ equations of motion in the steady state take the form

ãl = − iκl
i∆ωl + Γl/2

σ̃− ,

σ̃− = i

∑
l κlãl
R/2

σz and

σz = 1− i
2

R

∑

l

κl

(
σ̃+ãl − ã†l σ̃−

)
. (134)

Up to now the RWA and CRL approximations were used to obtain rather simple equations of
motion. In the next step the mutual dependencies of the operators in Eq. (134) are adopted. At
first, σ̃− is eliminated to find an expression for ãl:

ãl =
κl

i∆ωl + Γl/2

∑
l κlãl
R/2

σz .

Such an approach is termed adiabatic elimination and has to be handled with care in conjunction to
other approximations [368]. In the present case we have already dropped the fluctuation operators
and fastly oscillating terms. Hence, the intermediate results are approximative already. Therefore
we may take a pragmatic point of view and check if the end results are reasonable. In fact it turns
out that they agree in the case of a single mode oscillator [279] and to fully quantum calculations
(see Figs. 9 and 13). Consequently, our findings can be used with confidence.

Performing an adiabatic elimination of ãl we conclude

σz = 1− i
2

R

∑

l

κl

(
σ̃+ãl − ã†l σ̃−

)
= 1− i

2

R

∑

l

κl

(
− iκl

i∆ωl + Γl/2
+

iκl
−i∆ωl + Γl/2

)
σ̃+σ̃−

≡ 1− 2βσ̃+σ̃− = 1− β (1 + σz) , so

σz =
1− β
1 + β

.

with

β =
1

R

∑

l

κ2
l

(
+

1

i∆ωl + Γl/2
− 1

−i∆ωl + Γl/2

)
=

1

R

∑

l

κ2
l

Γl
∆ω2

l + Γ2
l /4
≡ 1

R

∑

l

γwc,l .

102



Here we have defined the l’th mode weak coupling emission rate

γwc,l ≡ κ2
l

Γl
∆ω2

l + Γ2
l /4

.

We are specifically interested in the expected photon number in each mode and its related radiative
emission rate. With our result for σz, we find

ã†l ãl =
κ2
l

∆ω2
l + Γ2

l /4
σ̃+σ̃− =

γwc,l

Γl

1 + σz
2

=
γwc,l

Γl

1 + 1−β
1+β

2
=

1

1 + β

γwc,l

Γl
.

Then, the radiative emission rate by mode l amounts to

〈ṅl〉 = ηl

〈
ã†l ãl

〉
Γl = ηl

γwc,lR

R+
∑
l γwc,l

.

For a single-mode oscillator on resonance with the QS, the latter result simplifies to (used in Sec.
3.5 and 5.2)

〈ṅ〉 = η
γwcR

R+ γwc
with γwc =

4κ2

Γ
.

B.9 Second-Order Correlation: Classical and Nonclassical Light States

We shall briefly review the meaning of the second order correlation function g2 (τ) and why it is
a useful observable to quantify the nonclassicality of a certain light state. Throughout our argu-
mentation, we will losely follow Loudon [233], but also Refs. [369,370] can be taken as instructive
reviews.

Specifically, we will analyze the second-order correlation g2 (τ) of a single-mode field where we
may suppress the spatial dependency for simplicity. In that case we can concisely write

g2 (τ) =
〈E? (t)E? (t+ τ)E (t+ τ)E (t)〉
〈E? (t)E (t)〉 〈E? (t+ τ)E (t+ τ)〉 .

If we assume stationary statistical properties, g2 is symmetric [g2 (τ) = g2 (−τ)]. Thus it is
sufficient to consider g2 for positive τ only.

B.9.1 The Classical Picture

In the case of classical fields, denoted by the subscript “c”, the order of E in g2
c is irrelevant. In

that case we find

g2
c (τ) =

〈E? (t)E (t)E? (t+ τ)E (t+ τ)〉
〈E? (t)E (t)〉 〈E? (t+ τ)E (t+ τ)〉 =

〈I (t) I (t+ τ)〉
〈I (t)〉 〈I (t+ τ)〉 .

A very interesting case occurs at τ = 0:

g2
c (0) =

〈
I2 (t)

〉

〈I (t)〉2
.

Note that I (t) is a classical statistical variable with a positive definite variance,

Var [I (t)] ≡
〈

(I (t)− 〈I (t)〉)2
〉

=
〈
I2 (t)

〉
− 〈I (t)〉2 ≥ 0 .
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This implies

g2
c (0) ≥ 1 , (135)

i.e. a fundamental limit of the second order correlation for classical light.

We may further deduce a very important property of g2
c (τ) from the Cauchy-Schwarz inequality

|〈a?b〉|2 ≤ 〈|a|〉2 〈|b|〉2, namely

〈I (t) I (t+ τ)〉2 ≤ 〈I (t)〉2 〈I (t+ τ)〉2 (136)

for real-valued intensities. If we assume stationarity, we further see that 〈I (t)〉2 〈I (t+ τ)〉2 =

〈I (t)〉4. Then, by taking the root of Eq. (136),

〈I (t) I (t+ τ)〉 = 〈I (t)〉2 ≤ 〈I (t)〉2 , so

g2
c (τ) =

〈I (t) I (t+ τ)〉
〈I (t)〉 〈I (t+ τ)〉 ≤

〈
I2 (t)

〉

〈I (t)〉2
= g2

c (0) .

Hence, for positive τ , gc (τ) is a monotoneously decreasing function. Using Eq. (135), the classical
second order correlation functions peaks at τ = 0 and decrease to 1 as τ → ∞. Noteworthy, the
magnitude of the maximum and the time-scales at which gc (τ) decreases depend on the actual
light source.

B.9.2 The Quantum Picture

For a quantized bosonic field, g2 (τ) is given by

g2 (τ) =

〈
a† (t) a† (t+ τ) a (t+ τ) a (t)

〉

〈a† (t) a (t)〉 〈a† (t+ τ) a (t+ τ)〉 .

The fundamental difference to the classical case is that one may not interchange the order of
operators. In the classical picture we observed a fundamental limit for g2 (0) [Eq. (135)]. In the
quantum picture, we find in the stationary case

g2 (0) =

〈
a†a†aa

〉

〈a†a〉2
=

〈
a†aa†a

〉
−
〈
a†
[
a, a†

]
a
〉

〈a†a〉2
=

〈(
a†a
)2〉−

〈
a†a
〉

〈a†a〉2
. (137)

Compared to the classical analysis, an
〈
a†a
〉
-term appears in the denominator. It can be antici-

pated that g2 (0) < 1 might be possible. But before such light states are discussed, thermal and
coherent radiatio shall be discussed.

Thermal Radiation

Revisiting Eq. (137), it becomes evident that it is sufficient to determine the expectation values
of the number operator N = a†a and of N2 to calculate g2 (0). We shall follow this approach to
find g2 (0) for thermal and coherent radiation.

With respect to the inverse temperature β = ~/kBT (in time units), the probability for n
photons in a thermal light field is given by the Boltzmann distribution

P (n) =
e−βωn∑∞
n=0 e

−βωn = e−βωn
{

1− e−βω
}
.
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The well-known expectation value for the number of photons is then

〈N〉 =
∞∑

n=0

nP (n) =
1

eβω − 1
and

〈
N2
〉

=
∞∑

n=0

n2 P (n) =
1 + eβω

(eβω − 1)
2 = 〈N〉2 2 〈N〉+ 1

〈N〉 = 〈N〉 (2 〈N〉+ 1) .

With the help of exp [−βω] = 〈N〉 / (1 + 〈N〉), P (n) may be expressed as

P (n) =
1

1 + 〈N〉

( 〈N〉
1 + 〈N〉

)n
.

Then it is

g2 (0) =

〈
N2
〉
− 〈N〉
〈N〉2

=
〈N〉 (2 〈N〉+ 1)− 〈N〉

〈N〉2
= 2 . (138)

Equation (138) is a rather simple but astonishing result. It implies that photons from strictly
thermal sources have a high probability to exist in bunches.

Coherent Radiation

Now to the case of coherent radiation. Coherent states obey a Poissonian distribution of the form

P (n) =
〈N〉n
n!

e−〈N〉 .

Mean and variance are equal for the Poisson distribution,

〈N〉 = Var (N) =
〈
N2
〉
− 〈N〉2 , so

〈
N2
〉

= 〈N〉+ 〈N〉2 .

Hence,

g2 (0) =

〈
N2
〉
− 〈N〉
〈N〉2

=
〈N〉+ 〈N〉2 − 〈N〉

〈N〉2
≡ 1 .

One can further derive that g2 (τ) = 1 ∀τ , which even holds for a single-atom laser [371]. This
second order coherence can be interpreted such that the individual photons in a coherent light
state are completely unrelated to each other. The probability to find some photons in a given time
frame is given by a Poisson distribution. Even for very small times there exist a non-vanishing
probability of more than one photon.

Fock states

Photons are bosons. Hence, the electromagnetic field state may be excited with an arbitrary
number of them. The situation changes dramatically if a two-level system is considered. This QS
may exhibit a single excitation only. It is a physical entity with fermionic properties that can in
general emit only a single photon at once.

Fock states |n〉 [cf. Eq. (27)] are often used to describe the state of a harmonic oscillator. If
the light field is in a Fock state, we can easily conclude that

〈N〉 = n and
〈
N2
〉

= n2 .

Hence g2 (0) =

〈
N2
〉
− 〈N〉
〈N〉2

= 1− 1

n
for n ≥ 1.
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It is obvious that g2 (0) < 1 ∀ n ≥ 1. Especially for n = 1, the case of a single photon, g2 (0) ≡ 0,
which is drastically different from classical expectations.

B.9.3 Conclusion

In the classical picture g2 (τ) is always bigger or equal to one, which simply results from the
Cauchy-Schwarz inequality. However, the quantization of the electromagnetic field is taken into
account, the field operators do not commute and an additional term arises. Whereas thermal and
coherent radiation exhibit light properties that can be understood within the classical picture, the
same does not hold for Fock states. In the special case of a single photon state, the second order
correlation vanishes at τ = 0. Hence, to understand nonclassical light emission, a quantization
of the electromagnetic field is inevitable and g2 (τ) is a suitable figure of merit to quantify its
nonclassicality.

B.10 Nanoantennas for Squeezed Light and Entangled Light Generation

In the last subsection the second-order correlation function as a measure for the nonclassicality of
single photon sources has been discussed. In this subsection we shall briefly discuss the generation
of two other nonclassical light states: squeezed and entangled light.

B.10.1 Squeezed Light

One of the basic results of quantum mechanics is Heisenberg’s uncertainty principle

∆A∆B ≥ 1

2
|〈[A,B]〉| . (139)

Here A andB are two operators and ∆A ≡
√〈

(A− 〈A〉)2
〉
≡
√

Var (A). The uncertainty principle

prohibits a simultaneous measurement of two non-commuting variables to an arbitrary accuracy.
However, the accuracy of a measurement of one variable may as well be increased at the cost of
higher uncertainties in the other. For instance, one may measure the position of a particle with
high precision, but loses an increasing amount of information about its momentum.

The same concept applied to the phase and amplitude of light states leads to so-called squeezed
states [185,372]. Squeezed state applications arise for example in the context of quantum metrology,
where phase uncertainty reduction can lead to drastically increased accuracies of interferometers
[373]. The reduction of the fundamental shot noise may lead to an accurate measurement of
gravitational waves as well [374]. But these nonclassical light states also play an increasing role in
the realization of continuous variable quantum communication [375,376].

Squeezed states are usually analyzed with respect to the so-called quadrature operators X+ =

a + a† and X− = −i
(
a− a†

)
[377]. These operators correspond to the real and imaginary parts

of the electric field, respectively. Their variance is proportional to the variance in amplitude
(∆X1 ∝ ∆n) and phase (∆X2 ∝ ∆φ). Their commutation relation is given by [X+, X−] = 2i.
According to Heisenberg, the uncertainty product of the quadrature operators is at least unity,
which is reached for coherent radiation. A squeezed state is found if the variance for one of the
quadrature operators is below unity, i.e. Var (X±) < 1.

Squeezed light can be mathematically described by the so-called squeeze operator S (ξ) =

exp
{

1
2

(
ξ?a2 − ξa†2

)}
that acts on a coherent state (ξ = r exp [iθ] ∈ C). In particular, the squeezed
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vacuum state |ξ〉 = S (ξ) |0〉 exhibits the following variances of the quadrature operators:

Var (X+) = cosh2 r + sinh2 r − 2 sinh r cosh r cos θ

Var (X−) = cosh2 r + sinh2 r + 2 sinh r cosh r cos θ .

For θ = 0, we have Var (X+) = exp {−2r} and Var (X−) = exp {2r} and we have squeezing in X+,
whereas for θ = π it is present in X−.

Physically, squeezed states can be produced by different processes. In fact, they are predicted
within the Jaynes-Cummings model [378] and for resonance fluorescence under certain conditions
[379, 380]. Prominent ways to obtain squeezed light are degenerate parametric down-conversion
with an effective Hamiltonian [377]

H = ~ω0a
†a+ 2~ω0b

†b+ i~χ2

(
a2b† − a†2b

)
and

H = ~ω0a
†a+ ~ω0b

†b+ i~χ3

(
a2b†2 − a†2b2

)

for degenerate four-wave mixing [381], respectively. In both cases, the interaction part of the
Hamiltonian can be written in a similar manner. Then it becomes obvious that an evolution of the
system results in an occurence of squezed states: The driving field E ∝ b+ b† may be regarded as
a coherent state. Then, the operators b and b† can be replaced by classical amplitudes β (t) e−iωbt

and β? (t) eiωbt.

With these assumptions, the interaction part in both Hamiltonians simply reads

HI,i = i~
(
η?i a

2 − ηia†2
)
.

Here η2 = βχ2 and η3 = β2χ3 are scalars that describe the interaction strength. For this interac-
tion, the unitary evolution operator takes the form of a squeezing operator:

UI (t) = exp [−iHIt/~] = exp
[(
η?i a

2 − ηa†2
)
t
]

= S (2ηt) .

Unfortunately, the intrinsic losses of NAs generally prevent the creation of squeezed light. We have
analyzed squeezed state creation for several realistic parameters of the a nonlinear NA material or
nonlinear embedding materials.

For example, a χ3 of silver in the order of 10−8esu [382] results in experimentally inaccessi-
ble squeezing. Preliminary estimations suggest that an enhancement in χ3 by several orders of
magnitude would be required. However, squeezing has been demonstrated in other systems with a
much stronger nonlinearity, i.e. in semiconductor microcavities [383]. A combination of different
approaches might be feasible. For example a NA may be embedded in a semiconductor microcavity
at low temperatures. This seems possible in general, but also extremely challenging to realize.

Thus, at least up to now squeezed state production using NAs may not be possible. One more
promising approach is the generation of entangled light.

B.10.2 Entangled Light

If two QSs form a combined system via a certain kind of interaction, the quantum state of the
combined system may not be written as a product of the single QS states. The QSs are said to be
entangled [185]. An example is the interaction of two two-level systems [384] in the so-called Dicke
basis [385], where entangled symmetric and antisymmetric states are formed (see App. B.11).

Most importantly, entanglement is a purely quantum phenomenon. Its discovery in 1935 during
controversial discussions about the correctness of quantum mechanics involving Einstein, Podolsky
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and Rosen [386], Schrödinger [387], Bohr [388] and many others lead to a much better understand-
ing of quantum mechanics in general. Thirty years later, Bell pointed out that entanglement can be
verified experimentally [389]. Ever since then it has been regarded as a powerful tool of quantum
information theory [390,391].

The concept of entangled QSs is not limited to localized QSs such as two-level systems or
qubits. As we have seen in Sec. 3.2, the electromagnetic field can be quantized in terms of
harmonic oscillators, which can be entangled. This is the case if the processes responsible for
a multi-photon-emission are entangled, since then the radiated photons are entangled as well.
This can be realized for example by two coupled emitting two-level systems, as discussed before.
Radiative cascades of a single multilevel QS obeying two in principle indistinguishable relaxation
paths can also be used to generate entangled photons [392–395].

The interaction of QSs is at the core of entanglement investigations. Since NAs are prime
candidates for enhanced light-matter-interactions, their use for entanglement schemes is now also
under consideration. First implementations to create polarization- and frequency-entangled pho-
ton states have been proposed [81, 396]. The investigated physical process, however, is often an
enhancement in the emission rate of the entangled photons. The entanglement itself results from
the QS coupled to the NA, which takes only a passive role. Thus, NA entangled state generation
can often be seen as a sophisticated case of single-photon emission into two different channels.
Hence, a thorough understanding of single photon emission helps to grasp important aspects of
NA enhanced entangled photon generation. Nevertheless, the QNM quantization can be used to
go beyond these Purcell factor considerations.

NAs generally enable stronger couplings, but also suffer from much higher losses compared to
entanglement studies in the context of microcavities [397–399]. NAs may be considered as “bad
cavities” [400]. Normally, such enhanced losses are detrimental for entanglement. But using the
QNM quantization scheme, Hou et al. have demonstrated that the losses might be used to enhance
entanglement in suitably designed hybrid systems [91] (see also Refs. [323,324]).

B.11 Two Quantum Systems coupled to a Nanoantenna: Eigenstates of
the Hamiltonian

If a single-mode NA is coupled to two two-level systems, the energy spectrum in the lossless case
can be given explicitly. This subsection is equivalent to App. C of Ref. [80] with minor adjustments.

It is often advantageous to analyze problems of coupled two-level systems in the so-called
Dicke basis. In this basis, the ground and excited states, |0〉 and |1〉, of both two-level sys-
tems form a combined eigenbasis [385]: {|D〉 ≡ |e〉 ⊗ |e〉 , |S〉 ≡ 1√

2
(|e〉 ⊗ |g〉+ |g〉 ⊗ |e〉), |A〉 ≡

1√
2

(−|e〉 ⊗ |g〉+ |g〉 ⊗ |e〉), and |G〉 ≡ |g〉 ⊗ |g〉}. We shall denote |D〉 as doubly excited state, |S〉
and |A〉 as symmetric and antisymmetric states, and |G〉 as ground state.

In the Dicke basis, the Hamiltonian of the hybrid system [Eq. (70)] reads

H =
1

2
~ω0 (2|D〉〈D|+ |S〉〈S|+ |A〉〈A|) + ~ωnaa

†a− ~
√

2κ
(
Σ+a+ a†Σ−

)
.

Here,

Σ+ =
1√
2

(
σ

(1)
+ + σ

(2)
+

)
= |D〉〈S|+ |S〉〈G|

is the creation operators of an excitation in both QSs, Σ− = Σ†+ the corresponding annihilation
operator. Noteworthy, the antisymmetric state is decoupled in the isolated system and can be
populated only by asymmetric decay mechanisms or illuminations. Thus, it is sufficient to con-
sider only the effective three-level system, whose states belong to the Hilbert space spanned by
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{|G〉, |S〉, |D〉}.
We shall give the explicit form of the eigenstates of the Hamiltonian and the corresponding

eigenenergies in the case of resonance between QSs and NA (ωna = ωqs). The states of the hybrid
system can be expressed in the Dicke basis for the QSs, and in the Fock basis {|m〉}∞m=0 for the
NA.

Each state can be characterized by the total number of excitations n it corresponds to. For
instance, n = 0 stands for the total ground state of the system |ψ0〉 = |G, 0〉 with eigenenergy
E0 = 0. For a single excitation (n = 1), there are two eigenstates and eigenvalues:

|ψ1,±〉 = ±|S, 0〉+ |G, 1〉 , E1,± = ~ωqs ∓
√

2~κ .

However, if the number of excitations amounts to n ≥ 2, there are three eigenstates:

|ψn,±〉 =
√
n− 1|D,n− 2〉 ±

√
2n− 1|S, n− 1〉+

√
n|G,n〉 with En,± = n~ωqs ∓

√
2 (2n− 1)~κ ,

|ψn,0〉 =
√
n|D,n− 2〉 −

√
n− 1|G,n〉 , En,0 = n~ωqs .

Note that the states are not normalized here. The eigenstates of the total system cannot be
written as a product of states of the QS and NA subsystems. Hence, the subsystems are inherently
entangled by their interaction.

The eigenstates attain a more complicated form if the two-level systems are not at resonance
with the NA (ωna 6= ωqs). Then, the eigenenergies strongly depend on the detuning [Fig. 17
(b)]. In the strongly off-resonant limit, the interaction becomes negligible and the subsystems are
independent. Consequently, the eigenenergies converge towards the unperturbed values.

Furthermore, in the limit of strong field intensities, i.e. for large numbers of excitations, the
eigenstates become approximately separable:

|ψn,±〉 ≈
(
|D〉 ±

√
2|S〉+ |G〉

)
⊗ |n〉 and |ψn,0〉 ≈ (|D〉 − |G〉)⊗ |n〉.

The interaction energies are then given by ∆En,± = ∓2~κ
√
n, ∆En,0 = 0. This means, that in the

limit of large field intensities, even though the field has strong influence on the QSs, their effect on
the NA state is negligible.
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C.5 Zusammenfassung

Die vorliegende Arbeit befasst sich mit der theoretischen Beschreibung von Nanoantennen (NAs)
und neuartigen Möglichkeiten der Licht-Materie-Wechselwirkung, welche sich durch NAs ergeben.
Im Rahmen dieser Arbeit wurden einige Beiträge zur Weiterentwicklung dieses wissenschaftlichen
Feldes dokumentiert. Diese sollen im Folgenden kurz zusammengefasst werden.

In Kap. 2 und 3 wurden theoretische Grundlagen eingeführt, um die Interaktion von NAs mit
Quantensystemen (QSs) zu beschreiben. Die darin beschriebenen approximativen Interaktions-
modelle sind vielseitig und können in verschiedenen physikalischen Bereichen angewendet werden.
Eine Beschreigung von NAs im Rahmen klassischer Elektrodynamik ermöglicht dabei den En-
twurf komplexef NAs für bestimmte Anwendungen. Auf der anderen Seite wurde ein Schema zur
Quantisierung von NAs basierend auf deren Quasinormalmoden (QNMs) entwickelt.

Die explizite Berechnung des quantisierten elektromagnetischen Feldes einer NA stellt eine
Neuheit dar. Die so berechneten Felder können zur Untersuchung verschiedener Interaktionen mit
QSs jenseits der elektrischen Dipolnäherung verwendet werden. Die vorgestellte Quantisierung
mittels QNMs bedeutet eine Einschränkung auf NAs, die effektiv als verlustbehaftete harmonische
Oszillatoren beschrieben werden können. Demzufolge wird die Freiheit, komplexe NAs zu entwer-
fen gegen die Möglichkeit, die Interaktion von NAs und QSs quantenmechanisch mittels weniger
Parameter zu beschreiben, eingetauscht. Die QNM Quantisierung ist durch einen niedrigdimen-
sionalen Hilbertraum und eine einfache Bestimmung der erwähnten Parameter mittels moderner
numerischer Methoden vielseitig einsetzbar.

Die semiklassische Beschreibung der Wechselwirkung zwischen NA und QS wurde in Kap. 4
benutzt, um die Dynamik eines Dreiniveausystems zu untersuchen, welches durch eine Quadrupol-
wechselwirkung in der Nähe einer entsprechend entworfenen NA angeregt wird. Damit sind NAs in
der Lage, Übergange in QSs anzuregen, die mit anderen Techniken kaum zugänglich sind. Selbst
unter Benutzung eines restiktiven Ratengleichungsmodells konnten interessante physikalische Ef-
fekte beschrieben werden. Neben der elektrischen Dipolnäherung wurde in Ref. [78] auch der
Einfluss der Dynamik eines QSs auf experimentelle Messgrößen hinterfragt. Es zeigt sich etwa ein
starker Einfluss der Lumineszenzerhöhung verglichen mit einer Freiraumanregung in Abhängigkeit
von der internen Dynamik des QSs. Ein allgemeiner Ansatz zur Beschreibung von Multipolwech-
selwirkungen mit Hilfe einer lokalen Entwicklung der Felder, welche elektrische und magnetische
Effekte klar voneinander trennt, wurde ebenfalls eingeführt. Diese Beiträge haben womögliche die
Art, wie Light-Materie-Wechselwirkungen untersucht werden beeinflusst.

Ein Leitmotiv unserer Arbeit ist es, zu untersuchende Effekte mit dem physikalisch einfachst
möglichen System zu studieren. Dies bedeutet insbesondere eine möglichst angepasste theoretische
Beschreibung und weithin vereinfachte NA Geometrien. Um Interaktionen zwischen NAs und QSs
quantenmechanisch zu beschreiben, bedarf es einer Quantisierung der Felder der NAs. Dies ist
inbesondere der Fall, wenn die Eigenschaften das emittierte Licht des gekoppelten Systems unter-
sucht werden sollen. In Kap. 5 wurde die Möglichkeit untersucht, NAs als lichtstarke Einzelphoto-
nenquellen zu benutzen, welche für mögliche Anwendungen in der Quantenkommunikation wichtig
sein könnten. Wir haben herausgestellt, dass die Erhöhung der spontanen Emissionsrate nicht die
einzige wichtige Kenngrößte für lichtstarke Einzelphotonenquellen ist. Sowohl die Anregungsart
als auch die -rate müssen beachtet werden. Es ist darüberhinaus nötig, die nichtklassischen Eigen-
schaften des emittierten Lichtes zu verifizieren. Mit Hilfe von numerischen und analytischen Unter-
suchungen konnten in Ref. [89] verschiedene notwendige Kompromisse zwischen Effizienz, Purcell
Faktor und nichtklassischen Eigenschaften des emittierten Lichtes herausgestellt werden. Im All-
gemeinen scheint es notwendig zu sein, die Interaktion zwischen NAs und QSs quantenmechanisch
zu beschreiben.

116



Im Falle der starken Kopplung zwischen QSs und NAs kann die Dynamik des Systems nur
quantenmechanisch konsistent beschrieben werden. In Kap. 6 wurde die Möglichkeit untersucht,
die starke Kopplung zwischen QSs und dafür entworfenen NAs zu realisieren (Ref. [80]). Wir
konnten zeigen, dass dieses Ziel im Prinzip erreicht werden könnte. Jedoch setzen verschiedene
gegensätzliche Wirkungsmechanismen zwischen der NA Effizienz und den Kopplungsraten Gren-
zen beim Erreichen von hohen Verhältnissen von Kopplungsstärke zu Verlustrate. Zusätzlich
sind die notwendigen kleinen Dimensionen der NAs und eine präzise Platzierung der QSs sehr
anspruchsvoll. Wenn die starke Kopplung von QSs und NAs erreicht werden kann, ergeben sich
jedoch lohnenswerte Perspektiven. Dies kann damit begründet werden, dass sich die dynamis-
chen und spektralen Eigenschaften eines solchen hybriden Systems stark von denen der isolierten
Systeme unterscheiden.

Zusammenfassend wurde gezeigt, wie verschiedene Beschreibungen der Interaktion von NAs
und QSs interessante Möglichkeiten für grundlegende Forschung und Anwendungen bieten können.
Semiklassische Ansätze ermöglichen detaillierte Untersuchungen anspruchsvoller NA Geometrien,
wohingegen die QNM Quantisierung eine vollständig quantenmechanische Beschreibung der Inter-
aktion erlaubt.
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Notation

Mathematical Conventions

Classical

imaginar unit i2 = −1

scalar function f (r)

complex numbers z = z′ + iz′′

complex conjugate (c.c.) z? = z′ − iz′′

coordinate vectors ei, i.e. ex
vector function F (r) =

∑
i Fi (r) ei

vector product A×B ∈ C3

inner product A ·B =
∑
iAiBiei · ei

total derivative df(x)
dx

partial derivative ∂f(x)
∂x ≡ ∂xf (x)

nabla operator ∇ =
∑
i ei∂i

Quantum

Dirac’s notation |n〉 (bra) and 〈n| (ket)
Hermitian conjugate (H.c.) |n〉† = 〈n|
inner product〈φ|ψ〉 =

´
φ? (x)ψ (x) dx ∈ C

outer product |φ〉 〈ψ|
commutator [A,B] = AB −BA
expectation value 〈A〉ψ = 〈ψ|A |ψ〉
composite Hilbert space |φ〉 ⊗ |ψ〉 ≡ |φ, ψ〉

Please note that there is no visual distinction between classical and quantum variables. It
should be always clear from the context what kind of variable is present.

Physical Quantities

See index on the last page.

Fourier Transformation

The convention for the Fourier transformation F used throughout this thesis is

f (k, ω) =
1

(2π)
2

ˆ ∞
−∞

f (x, t) e−i(kx−ωt)dxdt and f (x, t) =

ˆ ∞
−∞

f (k, ω) ei(kx−ωt)dkdω .

As a consequence,

F
[
f (t) = e−iω0t

]
(ω) =

ˆ ∞
−∞

ei(ω−ω0)tdt = 2πδ (ω − ω0) .

In quantum optics, positive-frequency-Fourier transformations are often used. Here, f (t) =

F [f (ω)] (t) =
´∞

0

[
f (ω) e−iωt + f? (ω) eiωt

]
dt. This definition is equivalent to the first one since

for real-valued f (t) f? (ω) = f (−ω) holds.
Please note that we do not emphasize a Fourier transform by some additional notation. This

is not only appealing from an aesthetic point of view but also fundamentally motivated: Any
variable of a certain vector space can be represented in a different basis. Inspired by Dirac’s
notation ψ (x) = 〈x|ψ〉, it is evident that also ψ (k) = 〈k|ψ〉 =

´
〈k|x〉 〈x|ψ〉 dx ≡

´
〈k|x〉ψ (x) dx

is valid.

132



Index

adiabatic elimination, 102
Ampère’s law, 7

Bohr radius a0, 35
BST (beam splitter transformation), 51

circular NAs, 18
closure equation, 81
coupling strength κ, 32
cQED (cavity quantum electrodynamics), 22
CRL (cold reservoir limit), 51, 101

dissipation, 9

efficiency η, 8
electric permittivity ε (r, ω), 7
excitation

incoherent pump, 52, 101
plane-wave illumination, 36, 39, 59

Fabry-Perot model, 15
Faraday’s law, 7
Fermi’s Golden Rule, 20, 89
forbidden transitions, 35

multipole coupling, 37
Fröhlich condition, 13

Gauss’s law
electric, 7
magnetic, 7

Green’s function G (r, r′, ω), 8

harmonic oscillator
annihilation operator a, 23
Fock states, 24
Hamiltonian, 23

Heisenberg’s uncertainty principle, 106

interaction picture, 87
modified, 99
perturbation theory, 88

Jaynes-Cummings model, 33

Lindblad operators, 31
Lorentzian spectral density, 30

magnetic permeability µ (r, ω), 7
Maxwell’s equations, 7
minimal coupling, 20
mode volume, 23

NA (nanoantenna), 2
nonclassical light

entangled, 107
single photons, 48
squeezed, 106

Ohm’s law, 7

partial trace, 96
Poynting’s Theorem, 9, 72

QD (quantum dot), 2
QNMs (quasinormal modes), 28

determination, 30
QS (quantum system), 1
quadrature operators, 106
quantization

cavity, 23
dissipative media, 24
NA (meaning), 22
QNMs, 29

quantum efficiency ηqs, 85

reflection coefficient, 15
calculation, 72

RWA (rotating wave approximation), 25, 100

Schrödinger’s equation, 87
second-order correlation g2 (τ), 55, 103

coherent radiation, 105
Fock states, 105
thermal radiation, 104

speed of light c, 7
spontaneous emission, 25, 94

emission rate γwc, 26, 51, 103
LDOS (local density of states) ρ (ω), 98
Purcell factor F (ω), 27
spectral density J (ω), 27

SPP (surface plasmon polariton), 1
strong coupling, 59, 97

condition, 60

Tomonaga-Schwinger equation, 88
two-level system, 25

annihilation operator σ−, 25
coupled, Dicke basis, 108

weak coupling, 26
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